河南省南陽(yáng)市南陽(yáng)一中2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第1頁(yè)
河南省南陽(yáng)市南陽(yáng)一中2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第2頁(yè)
河南省南陽(yáng)市南陽(yáng)一中2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第3頁(yè)
河南省南陽(yáng)市南陽(yáng)一中2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第4頁(yè)
河南省南陽(yáng)市南陽(yáng)一中2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南省南陽(yáng)市南陽(yáng)一中2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直角坐標(biāo)系中,直線的傾斜角是A.30° B.60°C.120° D.150°2.點(diǎn)在圓上,點(diǎn)在直線上,則的最小值是()A. B.C. D.3.設(shè)α,β是兩個(gè)不同的平面,m,n是兩條不重合的直線,下列命題中為真命題的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么4.設(shè)雙曲線()的焦距為12,則()A.1 B.2C.3 D.45.若圓上至少有三個(gè)點(diǎn)到直線的距離為1,則半徑的取值范圍是()A. B.C. D.6.已知圓C的圓心在直線上,且與直線相切于點(diǎn),則圓C方程為()A. B.C. D.7.早在古希臘時(shí)期,亞歷山大的科學(xué)家赫倫就發(fā)現(xiàn):光從一點(diǎn)直接傳播到另一點(diǎn)選擇最短路徑,即這兩點(diǎn)間的線段.若光從一點(diǎn)不是直接傳播到另一點(diǎn),而是經(jīng)由一面鏡子(即便鏡面是曲面)反射到另一點(diǎn),仍然選擇最短路徑.已知曲線,且將假設(shè)為能起完全反射作用的曲面鏡,若光從點(diǎn)射出,經(jīng)由上一點(diǎn)反射到點(diǎn),則()A. B.C. D.8.已知各項(xiàng)均為正數(shù)且單調(diào)遞減的等比數(shù)列滿足、、成等差數(shù)列.其前項(xiàng)和為,且,則()A. B.C. D.9.已知函數(shù),則下列說(shuō)法正確的是()A.的最小正周期為 B.的圖象關(guān)于直線C.的一個(gè)零點(diǎn)為 D.在區(qū)間的最小值為110.已知函數(shù),若對(duì)任意兩個(gè)不等的正數(shù),,都有恒成立,則a的取值范圍為()A. B.C. D.11.已知兩定點(diǎn)和,動(dòng)點(diǎn)在直線上移動(dòng),橢圓C以A,B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)P,則橢圓C的短軸的最小值為()A. B.C. D.12.已知?jiǎng)狱c(diǎn)的坐標(biāo)滿足方程,則的軌跡方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,則使成立的x的值為_(kāi)__________14.瑞士數(shù)學(xué)家歐拉(Euler)1765年在所著的《三角形的幾何學(xué)》一書(shū)中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點(diǎn),,,則歐拉線的方程為_(kāi)_____15.阿基米德(公元前287—公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.已知橢圓經(jīng)過(guò)點(diǎn),則當(dāng)取得最大值時(shí),橢圓的面積為_(kāi)________16.若向量,且?jiàn)A角的余弦值為_(kāi)_______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知集合,.(1)當(dāng)時(shí),求AB;(2)設(shè),,若是成立的充分不必要條件,求實(shí)數(shù)的取值范圍.18.(12分)如圖,在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c.已知b=3,c=6,,且AD為BC邊上的中線,AE為∠BAC的角平分線(1)求及線段BC的長(zhǎng);(2)求△ADE的面積19.(12分)在①,②,③這三個(gè)條件中任選一個(gè)補(bǔ)充在下面問(wèn)題中,并解答下列題目設(shè)首項(xiàng)為2的數(shù)列的前n項(xiàng)和為,前n項(xiàng)積為,且______(1)求數(shù)列的通項(xiàng)公式;(2)若數(shù)列的前n項(xiàng)和為,令,求數(shù)列的前n項(xiàng)和20.(12分)已知函數(shù)(1)求單調(diào)增區(qū)間;(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.21.(12分)中,三內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知(1)求角A;(2)若,角A的角平分線交于D,,求a22.(10分)已知等差數(shù)列的前n項(xiàng)和為,等比數(shù)列的前n項(xiàng)和為,且,,(1)求,;(2)已知,,試比較,的大小

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)直線方程得到直線的斜率后可得直線的傾斜角.【詳解】設(shè)直線的傾斜角為,則,因,故,故選D.【點(diǎn)睛】直線的斜率與傾斜角的關(guān)系是:,當(dāng)時(shí),直線的斜率不存在,注意傾斜角的范圍.2、B【解析】根據(jù)題意可知圓心,又由于線外一點(diǎn)到已知直線的垂線段最短,結(jié)合點(diǎn)到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,所以圓心到的距離為,所以的最小值為.故選:B.3、C【解析】AB.利用兩平面的位置關(guān)系判斷;CD.利用面面平行的判定定理判斷;【詳解】A.如果,,n∥β,那么α,β相交或平行;故錯(cuò)誤;B.如果,,,那么α,β垂直,故錯(cuò)誤;C.如果m∥n,,則,又,那么α∥β,故C正確;D錯(cuò)誤,故選:C4、B【解析】根據(jù)可得關(guān)于的方程,解方程即可得答案.【詳解】因?yàn)榭苫癁椋?,則.故選:B.【點(diǎn)睛】本題考查已知雙曲線的焦距求參數(shù)的值,考查函數(shù)與方程思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.5、B【解析】先求出圓心到直線的距離為,由此可知當(dāng)圓的半徑為時(shí),圓上恰有三點(diǎn)到直線的距離為,當(dāng)圓的半徑時(shí),圓上恰有四個(gè)點(diǎn)到直線的距離為,故半徑的取值范圍是,即可求出答案.【詳解】由已知條件得的圓心坐標(biāo)為,圓心到直線為,∵圓上至少有三個(gè)點(diǎn)到直線的距離為1,∴圓的半徑的取值范圍是,即,即半徑的取值范圍是.故選:.6、C【解析】設(shè)出圓心坐標(biāo),根據(jù)垂直直線的斜率關(guān)系求得圓心坐標(biāo),結(jié)合兩點(diǎn)距離公式得半徑,即可得圓方程【詳解】設(shè)圓心為,則圓心與點(diǎn)的連線與直線l垂直,即,則點(diǎn),所以圓心為,半徑,所以方程為,故選:C7、B【解析】記橢圓的右焦點(diǎn)為,根據(jù)橢圓定義,得到,由題中條件,確定本題的本質(zhì)即是求的最小值,結(jié)合題中數(shù)據(jù),即可求出結(jié)果.【詳解】記橢圓的右焦點(diǎn)為,根據(jù)橢圓的定義可得,,所以,因?yàn)?,?dāng)且僅當(dāng)三點(diǎn)共線時(shí),,即;由題意可得,求的值,即是求最短路徑,即求的最小值,所以的最小值為,因此.故選:B.【點(diǎn)睛】思路點(diǎn)睛:求解橢圓上動(dòng)點(diǎn)到一焦點(diǎn)和一定點(diǎn)距離和的最小值或差的最大值時(shí),一般需要利用橢圓的定義,將問(wèn)題轉(zhuǎn)化為動(dòng)點(diǎn)與另一焦點(diǎn)以及該定點(diǎn)距離和的最值問(wèn)題來(lái)求解即可.8、C【解析】先根據(jù),,成等差數(shù)列以及單調(diào)遞減,求出公比,再由即可求出,再根據(jù)等比數(shù)列通項(xiàng)公式以及前項(xiàng)和公式即可求出.【詳解】解:由,,成等差數(shù)列,得:,設(shè)的公比為,則,解得:或,又單調(diào)遞減,,,解得:,數(shù)列的通項(xiàng)公式為:,.故選:C9、D【解析】根據(jù)余弦函數(shù)的圖象與性質(zhì)判斷其周期、對(duì)稱軸、零點(diǎn)、最值即可.【詳解】函數(shù),周期為,故A錯(cuò)誤;函數(shù)圖像的對(duì)稱軸為,,,不是對(duì)稱軸,故B錯(cuò)誤;函數(shù)的零點(diǎn)為,,,所以不是零點(diǎn),故C錯(cuò)誤;時(shí),,所以,即,所以,故D正確.故選:D10、A【解析】將已知條件轉(zhuǎn)化為時(shí)恒成立,利用參數(shù)分離的方法求出a的取值范圍【詳解】對(duì)任意都有恒成立,則時(shí),,當(dāng)時(shí)恒成立,

,當(dāng)時(shí)恒成立,,故選:A11、B【解析】根據(jù)題意,點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的性質(zhì),以及橢圓的定義,即可求解.【詳解】根據(jù)題意,設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),則,解得,即.根據(jù)橢圓的定義可知,,當(dāng)、、三點(diǎn)共線時(shí),長(zhǎng)軸長(zhǎng)取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.12、C【解析】此方程表示點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之差為8,而這正好符合雙曲線的定義,點(diǎn)的軌跡是雙曲線的右支,,的軌跡方程是,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用空間向量垂直的坐標(biāo)表示列方程求參數(shù)x的值.【詳解】由題設(shè),,可得.故答案為:.14、【解析】根據(jù)給定信息,利用三角形重心坐標(biāo)公式求出的重心,再結(jié)合對(duì)稱性求出的外心,然后求出歐拉線的方程作答.【詳解】因的頂點(diǎn),,,則的重心,顯然的外心在線段AC中垂線上,設(shè),由得:,解得:,即點(diǎn),直線,化簡(jiǎn)整理得:,所以歐拉線的方程為.故答案:15、【解析】利用基本不等式得出取得最大值時(shí)的條件結(jié)合可知,再利用點(diǎn)在橢圓方程上,故可求得、的值,進(jìn)而求出橢圓的面積.詳解】由基本不等式可得,當(dāng)且僅當(dāng)時(shí)取得最大值,由可知,∵橢圓經(jīng)過(guò)點(diǎn),∴,解得,,則橢圓的面積為.故答案為:.16、【解析】根據(jù)求解即可.【詳解】,故答案為:【點(diǎn)睛】本題主要考查了求空間中兩個(gè)向量的夾角,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)由,解得范圍,可得,由可得:,解得.即可得出(2)由,解得.根據(jù)是成立的必要條件,利用包含關(guān)系列不等式即可得出實(shí)數(shù)的取值范圍【詳解】(1)由,解得,可得:,可得:,化為:,解得,所以=.(2)q是p成立的充分不必要條件,所以集合B是集合A的真子集.由,解得,又集合A=,所以或解得0≤a≤2,即實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了簡(jiǎn)易邏輯的判定方法、集合之間的關(guān)系、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題18、(1),BC=6(2)【解析】(1)利用正弦定理、二倍角公式化簡(jiǎn)已知條件,求得,結(jié)合余弦定理求得,也即.(2)求得三角形的面積,結(jié)合角平分線、中線的性質(zhì)求得三角形的面積.小問(wèn)1詳解】∵,∴,∴,∴由余弦定理得(負(fù)值舍去),即BC=6.【小問(wèn)2詳解】∵,,∴,∴,∵AE平分∠BAC,,由正弦定理得:,其中,∴,∵AD為BC邊的中線,∴,∴.19、(1);(2).【解析】(1)選擇不同的條件,再通過(guò)構(gòu)造數(shù)列以及累乘法即可求得對(duì)應(yīng)情況下的通項(xiàng)公式;(2)根據(jù)(1)中所求,求得,再利用錯(cuò)位相減法求其前項(xiàng)和即可.【小問(wèn)1詳解】選①:∵,即,∴.即,∴數(shù)列是常數(shù)列,∴,故;選②:∵,∴時(shí),,則,即∴,∴;當(dāng)時(shí),也滿足,∴;選③:得,所以數(shù)列是等差數(shù)列,首項(xiàng)為2,公差為1則,∴.【小問(wèn)2詳解】由(1)知當(dāng)時(shí),,∴又∵時(shí),,符合上式,∴∴∴而相減得∴.20、(1)單調(diào)增區(qū)間為;(2).【解析】(1)求導(dǎo)由求解.(2)將時(shí),恒成立,轉(zhuǎn)化為時(shí),恒成立,令用導(dǎo)數(shù)法由求解即可.【詳解】(1)因?yàn)楹瘮?shù)所以令,解得,所以單調(diào)增區(qū)間為.(2)因?yàn)闀r(shí),恒成立,所以時(shí),恒成立,令則令因?yàn)闀r(shí),恒成立,所以在單調(diào)遞減.當(dāng)時(shí),在單調(diào)遞減,故符合要求;當(dāng)時(shí),單調(diào)遞減,故存在使得則當(dāng)時(shí)單調(diào)遞增,不符合要求;當(dāng)時(shí),單調(diào)遞減,故存在使得則當(dāng)時(shí)單調(diào)遞增,不符合要求.綜上.【點(diǎn)睛】方法點(diǎn)睛:恒(能)成立問(wèn)題的解法:若在區(qū)間D上有最值,則(1)恒成立:;;(2)能成立:;.若能分離常數(shù),即將問(wèn)題轉(zhuǎn)化為:(或),則(1)恒成立:;;(2)能成立:;;21、(1)(2)【解析】(1)根據(jù)正弦定理統(tǒng)一三角函數(shù)化簡(jiǎn)即可求解;(2)根據(jù)角平分線建立三角形面積方程求出b,再由余弦定理求解即可.【小問(wèn)1詳解】由及正弦定理,得∵,∴∵,∴∵,∴【小問(wèn)2詳解】∵,∴,解得由余弦定理,得,∴.22、(1),;(2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論