2026屆徐州市重點中學高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2026屆徐州市重點中學高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2026屆徐州市重點中學高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2026屆徐州市重點中學高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2026屆徐州市重點中學高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆徐州市重點中學高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),且函數(shù)恰有三個不同的零點,則實數(shù)的取值范圍是A. B.C. D.2.設函數(shù),則下列結論錯誤的是()A.的一個周期為B.的圖像關于直線對稱C.的圖像關于點對稱D.在有3個零點3.設點分別是空間四邊形的邊的中點,且,,,則異面直線與所成角的正弦值是()A. B.C. D.4.等于A. B.C. D.5.已知函數(shù),若對一切,都成立,則實數(shù)a的取值范圍為()A. B.C. D.6.對于函數(shù),,“”是“的圖象既關于原點對稱又關于軸對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.下列函數(shù)中,既是奇函數(shù)又在區(qū)間上是增函數(shù)的是()A. B.C. D.8.已知函數(shù)是定義在R上的偶函數(shù),且,當時,,則在區(qū)間上零點的個數(shù)為()A.2 B.3C.4 D.59.函數(shù)的定義域為,且為奇函數(shù),當時,,則函數(shù)的所有零點之和是()A.2 B.4C.6 D.810.設,,則a,b,c的大小關系是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標系中,正三角形ABC的邊BC所在直線的斜率是0,則AC,AB所在直線的斜率之和為________12.一條從西向東的小河的河寬為3.5海里,水的流速為3海里/小時,如果輪船希望用10分鐘的時間從河的南岸垂直到達北岸,輪船的速度應為______;13.將函數(shù)的圖象先向右平移個單位長度,得到函數(shù)________________的圖象,再把圖象上各點橫坐標縮短到原來的(縱坐標不變),得到函數(shù)________________的圖象14.函數(shù)的最小值為__________15.設是第三象限的角,則的終邊在第_________象限.16.如圖所示,正方體的棱長為,線段上有兩個動點,且,則下列結論中正確的是_____①∥平面;②平面⊥平面;③三棱錐的體積為定值;④存在某個位置使得異面直線與成角°三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,,,.當k為何值時:(1);(2).18.已知集合,.(1)求;(2)求.19.如圖所示,正四棱錐中,為底面正方形的中心,側棱與底面所成的角的正切值為(1)若是的中點,求異面直線與所成角的正切值(2)在棱上是否存在一點,使側面,若存在,試確定點的位置;若不存在,說明理由20.已知函數(shù),(1)求不等式的解集;(2)若有兩個不同的實數(shù)根,求a的取值范圍21.給出以下四個式子:①;②;③;④.(1)已知所給各式都等于同一個常數(shù),試從上述四個式子中任選一個,求出這個常數(shù);(2)分析以上各式的共同特點,寫出能反應一般規(guī)律的等式,并對等式正確性作出證明.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】函數(shù)恰有三個不同的零點等價于與有三個交點,再分別畫出和的圖像,通過觀察圖像得出a的范圍.【詳解】解:方程所以函數(shù)恰有三個不同的零點等價于與有三個交點記,畫出函數(shù)簡圖如下畫出函數(shù)如圖中過原點虛線l,平移l要保證圖像有三個交點,向上最多平移到l’位置,向下平移一直會有三個交點,所以,即故選A.【點睛】本題考查了函數(shù)的零點問題,解決函數(shù)零點問題常轉化為兩函數(shù)交點問題2、D【解析】利用輔助角公式化簡,再根據(jù)三角函數(shù)的性質(zhì)逐個判斷即可【詳解】,對A,最小周期為,故也為周期,故A正確;對B,當時,為的對稱軸,故B正確;對C,當時,,又為的對稱點,故C正確;對D,則,解得,故在內(nèi)有共四個零點,故D錯誤故選:D3、C【解析】取BD中點G,連結EG、FG∵△ABD中,E、G分別為AB、BD的中點∴EG∥AD且EG=AD=4,同理可得:FG∥BC且FG=BC=3,∴∠FEG(或其補角)就是異面直線AD與EF所成的角∵△FGE中,EF=5,EG=4,F(xiàn)G=3,∴EF2=25=EG2+FG2,得故答案為C.4、A【解析】分析:由條件利用誘導公式、兩角和差的余弦公式化簡所給的式子,可得結果.詳解:.故選:A.點睛:本題主要考查誘導公式、兩角和差的余弦公式的應用,屬于基礎題.5、C【解析】將,成立,轉化為,對一切成立,由求解即可.【詳解】解:因為函數(shù),若對一切,都成立,所以,對一切成立,令,所以,故選:C【點睛】方法點睛:恒(能)成立問題的解法:若在區(qū)間D上有最值,則(1)恒成立:;;(2)能成立:;.若能分離常數(shù),即將問題轉化為:(或),則(1)恒成立:;;(2)能成立:;.6、C【解析】由函數(shù)奇偶性的定義求出的解析式,可得出結論.【詳解】若函數(shù)的定義域為,的圖象既關于原點對稱又關于軸對稱,則,可得,因此,“”是“的圖象既關于原點對稱又關于軸對稱”的充要條件故選:C.7、B【解析】先由函數(shù)定義域,排除A;再由函數(shù)奇偶性排除D,最后根據(jù)函數(shù)單調(diào)性,即可得出B正確,C錯誤.【詳解】A選項,的定義域為,故A不滿足題意;D選項,余弦函數(shù)偶函數(shù),故D不滿足題意;B選項,正切函數(shù)是奇函數(shù),且在上單調(diào)遞增,故在區(qū)間是增函數(shù),即B正確;C選項,正弦函數(shù)是奇函數(shù),且在上單調(diào)遞增,所以在區(qū)間是增函數(shù);因此是奇函數(shù),且在上單調(diào)遞減,故C不滿足題意.故選:B.【點睛】本題主要考查三角函數(shù)性質(zhì)的應用,熟記三角函數(shù)的奇偶性與單調(diào)性即可,屬于基礎題型.8、C【解析】根據(jù)函數(shù)的周期性、偶函數(shù)的性質(zhì),結合零點的定義進行求解即可.【詳解】因為,所以函數(shù)的周期為,當時,,即,因為函數(shù)是偶函數(shù)且周期為,所以有,所以在區(qū)間上零點的個數(shù)為,故選:C9、B【解析】根據(jù)題意可知圖象關于點中心對稱,由的解析式求出時的零點,根據(jù)對稱性即可求出時的零點,即可求解.【詳解】因為為奇函數(shù),所以函數(shù)的圖象關于點中心對稱,將的圖象向右平移個單位可得的圖象,所以圖象關于點中心對稱,當時,,令解得:或,因為函數(shù)圖象關于點中心對稱,則當時,有兩解,為或,所以函數(shù)的所有零點之和是,故選:B第II卷(非選擇題10、C【解析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),求得的取值范圍,即可求解.【詳解】由對數(shù)的性質(zhì),可得,又由指數(shù)函數(shù)的性質(zhì),可得,即,且,所以.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、0【解析】由于正三角形的內(nèi)角都為,且邊BC所在直線的斜率是0,不妨設邊AB所在直線的傾斜角為,則斜率為,則邊AC所在直線的傾斜角為,斜率為,所以AC,AB所在直線的斜率之和為12、15海里/小時【解析】先求出船的實際速度,再利用勾股定理得到輪船的速度.【詳解】設船的實際速度為,船速,水的流速,則海里/小時,∴海里/小時.故答案為:15海里/小時13、①.②.【解析】根據(jù)三角函數(shù)的圖象變換可得變換后函數(shù)的解析式.【詳解】由三角函數(shù)的圖象變換可知,函數(shù)的圖象先向右平移可得,再把圖象上各點橫坐標縮短到原來的(縱坐標不變)可得,故答案為:;14、【解析】所以,當,即時,取得最小值.所以答案應填:.考點:1、對數(shù)的運算;2、二次函數(shù)的最值.15、二或四【解析】根據(jù)是第三象限角,得到,,再得到,,然后討論的奇偶可得答案.【詳解】因為是第三象限角,所以,,所以,,當為偶數(shù)時,為第二象限角,當為奇數(shù)時,為第四象限角.故答案為:二或四.16、①②③④【解析】在①中,由EF∥BD,得EF∥平面ABCD;在②中,連接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,從而得到面ACF⊥平面BEF;在③中,三棱錐E﹣ABF的體積與三棱錐A﹣BEF的體積相等,從而三棱錐E﹣ABF的體積為定值;在④中,令上底面中心為O,得到存在某個位置使得異面直線AE與BF成角30°【詳解】由正方體ABCD﹣A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F,且,知:在①中,由EF∥BD,且EF?平面ABCD,BD?平面ABCD,得EF∥平面ABCD,故①正確;在②中,連接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,而BE?面BDD1B1,BF?面BDD1B1,∴AC⊥平面BEF,∵AC?平面ACF,∴面ACF⊥平面BEF,故②正確;在③中,三棱錐E﹣ABF的體積與三棱錐A﹣BEF的體積相等,三棱錐A﹣BEF的底面積和高都是定值,故三棱錐E﹣ABF的體積為定值,故③正確;在④中,令上底面中心為O,當E與D1重合時,此時點F與O重合,則兩異面直線所成的角是∠OBC1,可求解∠OBC1=300,故存在某個位置使得異面直線AE與BF成角30°,故④正確故答案為①②③④【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或2;(2)【解析】(1)根據(jù)向量共線坐標公式列方程即可求解;(2)根據(jù)向量垂直坐標公式列方程即可求解【詳解】(1)若,有,整理為解得或2;(2)若,有,整理為解得:18、(1)(2)【解析】(1)分別求兩個集合,再求交集;(2)先求,再求.【小問1詳解】,解得:,即,,解得:,即,;【小問2詳解】,.19、(1);(2)為四等分點(靠近點A);答案見解析【解析】(1)取中點,連,,則可得為二面角的平面角,為側棱與底面所成的角,連接,則,從而可得或其補角為異面直線與所成的角,進而可求得答案;(2)延長交于,取中點,連、,由線面垂直的判定可得平面,則平面平面,再由線面垂直的判定可得平面,取的中點,可證得四邊形為平行四邊形,所以,從而可得側面【詳解】解:(1)取中點,連,,因為正四棱錐中,為底面正方形的中心,所以面,則為二面角的平面角,為側棱與底面所成的角,所以,連接,則,或其補角為異面直線與所成的角,因為,,,所以平面平面,所以,(2)延長交于,取中點,連、因為,,,故平面,因平面,故平面平面,又,,故為等邊三角形,所以,由平面,故,因為,所以平面,取的中點,,四邊形為平行四邊形,所以,平面即為AD的四等分點(靠近點A)20、(1)(2)【解析】(1)利用三角恒等變換公式將化到最簡形式,確定,在這個范圍內(nèi)解三角不等式即可;(2)確定在上的最值,根據(jù)有兩個不同的實數(shù)根,得到a應滿足的條件,解得答案.【小問1詳解】原式化簡后得,由,則∴,可得,即,故不等式的解集為【小問2詳解】在上的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論