版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
上海市同濟大學一附中2026屆高一數(shù)學第一學期期末統(tǒng)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知a=4-5,b=log45,c=log0.45,則a,b,c的大小關系為()A.a>b>c B.c>b>aC.b>a>c D.c>a>b2.已知實數(shù)x,y滿足,那么的最大值為()A. B.C.1 D.23.設,且,則()A. B.C. D.4.下列結論中正確的是A.若角的終邊過點,則B.若是第二象限角,則為第二象限或第四象限角C.若,則D.對任意,恒成立5.已知函數(shù),若存在互不相等的實數(shù),,滿足,則的取值范圍是()A. B.C. D.6.已知函數(shù),將的圖象上所有點沿x軸平移個單位長度,再將圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,且函數(shù)的圖象關于y軸對稱,則的最小值是()A. B.C. D.7.命題:“,”的否定是()A., B.,C., D.,8.已知函數(shù)的部分圖象如圖所示,則函數(shù)圖象的一個對稱中心可能為()A. B.C. D.9.設a是方程的解,則a在下列哪個區(qū)間內(nèi)()A.(0,1) B.(3,4)C.(2,3) D.(1,2)10.已知定義在R上的函數(shù)是奇函數(shù)且滿足,,數(shù)列滿足,且,(其中為的前n項和).則A.3 B.C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)的圖象關于直線對稱,則的最小值是________.12.已知冪函數(shù)經(jīng)過點,則______13.數(shù)據(jù)的第50百分位數(shù)是__________.14.如果直線與直線互相垂直,則實數(shù)__________15.當時,的最小值為______16.若,則的值為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若函數(shù)的定義域為,求集合;(2)若集合,求.18.已知某觀光海域AB段的長度為3百公里,一超級快艇在AB段航行,經(jīng)過多次試驗得到其每小時航行費用Q(單位:萬元)與速度v(單位:百公里/小時)(0≤v≤3)的以下數(shù)據(jù):012300.71.63.3為描述該超級快艇每小時航行費用Q與速度v的關系,現(xiàn)有以下三種函數(shù)模型供選擇:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b(1)試從中確定最符合實際的函數(shù)模型,并求出相應的函數(shù)解析式;(2)該超級快艇應以多大速度航行才能使AB段的航行費用最少?并求出最少航行費用19.求滿足以下條件的m值.(1)已知直線2mx+y+6=0與直線(m-3)x-y+7=0平行;(2)已知直線mx+(1-m)y=3與直線(m-1)x+(2m+3)y=2互相垂直.20.已知函數(shù),其中是自然對數(shù)的底數(shù),(1)若函數(shù)在區(qū)間內(nèi)有零點,求的取值范圍;(2)當時,,,求實數(shù)的取值范圍21.已知點及圓.(1)若直線過點且與圓心的距離為1,求直線的方程;(2)設過點的直線與圓交于兩點,當時,求以線段為直徑的圓的方程;(3)設直線與圓交于兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,判斷的大致范圍,即可比較大小.【詳解】因為,且,故;又,故;又,故;故.故選:C.2、C【解析】根據(jù)重要不等式即可求最值,注意等號成立條件.【詳解】由,可得,當且僅當或時等號成立.故選:C.3、C【解析】將等式變形后,利用二次根式的性質(zhì)判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關系即可求解,屬于簡單題目.4、D【解析】對于A,當時,,故A錯;對于B,取,它是第二象限角,為第三象限角,故B錯;對于C,因且,故,所以,故C錯;對于D,因為,所以,所以,故D對,綜上,選D點睛:對于銳角,恒有成立5、D【解析】作出函數(shù)的圖象,根據(jù)題意,得到,結合圖象求出的范圍,即可得出結果.【詳解】假設,作出的圖象如下;由,所以,則令,所以,由,所以,所以,故.故選:D.【點睛】方法點睛:已知函數(shù)零點個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,進而構造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結合的方法求解.6、B【解析】先將解析式化簡后,由三角函數(shù)圖象變換得到的解析式后求解.【詳解】若向左平移個單位長度,再將圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變)得到,由題意得,的最小值為;若向右平移個單位長度,再將圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變)得到,同理得的最小值為,故選:B7、C【解析】根據(jù)含有一個量詞的命題的否定形式,全稱命題的否定是特稱命題,可得答案.【詳解】命題:“,”是全稱命題,它的否定是特稱命題:,,故選:C8、C【解析】先根據(jù)圖象求出,得到的解析式,再根據(jù)整體代換法求出其對稱中心,賦值即可得出答案【詳解】由圖可知,,,∴,∴當時,,即令,解得當時,可得函數(shù)圖象的一個對稱中心為故選:C.【點睛】本題主要通過已知三角函數(shù)的圖像求解析式考查三角函數(shù)的性質(zhì),屬于中檔題.利用利用圖象先求出周期,用周期公式求出,利用特殊點求出,正確求是解題的關鍵.求解析式時,求參數(shù)是確定函數(shù)解析式的關鍵,由特殊點求時,一定要分清特殊點是“五點法”的第幾個點,用五點法求值時,往往以尋找“五點法”中的第一個點為突破口,“第一點”(即圖象上升時與軸的交點)時;“第二點”(即圖象的“峰點”)時;“第三點”(即圖象下降時與軸的交點)時;“第四點”(即圖象的“谷點”)時;“第五點”時.9、C【解析】設,再分析得到即得解.【詳解】由題得設,由零點定理得a∈(2,3).故答案為C【點睛】本題主要考查函數(shù)的零點和零點定理,意在考查學生對這些知識的掌握水平和分析推理能力.10、A【解析】由奇函數(shù)滿足可知該函數(shù)是周期為的奇函數(shù),由遞推關系可得:,兩式做差有:,即,即數(shù)列構成首項為,公比為的等比數(shù)列,故:,綜上有:,,則:.本題選擇A選項.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)正弦函數(shù)圖象的對稱性求解.【詳解】依題意可知,得,所以,故當時,取得最小值.故答案為:.【點睛】本題考查三角函數(shù)的對稱性.正弦函數(shù)的對稱軸方程是,對稱中心是12、##0.5【解析】將點代入函數(shù)解得,再計算得到答案.【詳解】,故,.故答案為:13、16【解析】第50百分位數(shù)為數(shù)據(jù)的中位數(shù),即得.【詳解】數(shù)據(jù)的第50百分位數(shù),即為數(shù)據(jù)的中位數(shù)為.故答案為:16.14、或2【解析】分別對兩條直線的斜率存在和不存在進行討論,利用兩條直線互相垂直的充要條件,得到關于的方程可求得結果【詳解】設直線為直線;直線為直線,①當直線率不存在時,即,時,直線的斜率為0,故直線與直線互相垂直,所以時兩直線互相垂直②當直線和斜率都存在時,,要使兩直線互相垂直,即讓兩直線的斜率相乘為,故③當直線斜率不存在時,顯然兩直線不垂直,綜上所述:或,故答案為或.【點睛】本題主要考查兩直線垂直的充要條件,若利用斜率之積等于,應注意斜率不存在的情況,屬于中檔題.15、【解析】將所求代數(shù)式變形為,利用基本不等式即可求解.【詳解】因為,所以,所以,當且僅當即時等號成立,所以的最小值為,故答案為:.16、0【解析】由,得到∴sin∴2sin+4兩邊都除以,得:2tan故答案為0三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】⑴滿足函數(shù)有意義的條件為,求出結果即可;⑵根據(jù)已知條件及并集的運算法則可得結果;解析:(1)要使函數(shù)有意義,則要,得.所以.(2)∵,∴18、(1)選擇函數(shù)模型,函數(shù)解析式為;(2)以1百公里/小時航行時可使AB段的航行費用最少,且最少航行費用為2.1萬元.【解析】(1)對題中所給的三個函【解析】對應其性質(zhì),結合題中所給的條件,作出正確的選擇,之后利用待定系數(shù)法求得解析式,得出結果;(2)根據(jù)題意,列出函數(shù)解析式,之后應用配方法求得最值,得到結果.【詳解】(1)若選擇函數(shù)模型,則該函數(shù)在上為單調(diào)減函數(shù),這與試驗數(shù)據(jù)相矛盾,所以不選擇該函數(shù)模型若選擇函數(shù)模型,須,這與試驗數(shù)據(jù)在時有意義矛盾,所以不選擇該函數(shù)模型從而只能選擇函數(shù)模型,由試驗數(shù)據(jù)得,,即,解得故所求函數(shù)解析式為:(2)設超級快艇在AB段的航行費用為y(萬元),則所需時間(小時),其中,結合(1)知,所以當時,答:當該超級快艇以1百公里/小時航行時可使AB段的航行費用最少,且最少航行費用為2.1萬元【點睛】該題考查的是有關函數(shù)的應用題,涉及到的知識點有函數(shù)模型的正確選擇,等量關系式的建立,配方法求二次式的最值,屬于簡單題目.19、(1)(2)或【解析】(1)平行即兩直線的斜率相等,建立等式,即可得出答案.(2)直線垂直即兩直線斜率之積為-1,建立等式,即可得出答案.【詳解】解:(1)當m=0或m=3時,兩直線不平行當m0且m3時,若兩直線平行,則(2)當m=0或m=時,兩直線不垂直當m=1時,兩直線互相垂直當m0,1,時,若兩直線垂直,則或也可用m(m-1)+(1-m)(2m+3)=0,即m2+2m-3=0,解得m=1,或m=-3.【點睛】本道題目考查了直線平行或垂直的判定條件,注意,當x,y的系數(shù)含有參數(shù)的時候,要考慮系數(shù)是否為0.20、(1);(2).【解析】(1)解法①:討論或,判斷函數(shù)的單調(diào)性,利用零點存在性定理即可求解;解法②:將問題轉(zhuǎn)化為在區(qū)間上有解,即e有解,討論或解方程即可求解.(2)解法①:分離參數(shù)可得,令,,求出的最大值即可求解;解法②:不等式轉(zhuǎn)化為恒成立,令,,可得函數(shù),,討論或即可求解.【詳解】(1)解法①:當時,,沒有零點;當時,函數(shù)是增函數(shù),則需要,解得.,滿足零點存在定理.因此函數(shù)在區(qū)間內(nèi)有一個零點綜上所述,的取值范圍為.解法②:的零點就是方程的解,即在區(qū)間上有解方程變形得,當時,方程無解,當時,解為,則,解得,綜上所述,的取值范圍為(2)解法①由題意知,,即因為,則,又,令,,則(當且僅當時等號成立),所以,即的取值范圍是.解法②由題意知,,即,令,,即,當時,顯然不成立,因此.對于函數(shù),,,則,解得,即m的取值范圍是.21、(1)或;(2);(3)不存在.【解析】(1)設出直線方程,結合點到直線距離公式,計算參數(shù),即可.(2)證明得到點P為MN的中點,建立圓方程,即可.(3)將直線方程代入圓方程,結合交點個數(shù),計算a的范圍,計算直線的斜率,計算a的值,即可【詳解】(1)直線斜率存在時,設直線的斜率為,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 瓦斯泵工崗前認證考核試卷含答案
- 鉭鈮精煉工安全操作能力考核試卷含答案
- 工業(yè)廢氣治理工崗前工作能力考核試卷含答案
- 繼電器制造工崗前保密考核試卷含答案
- 絨線編織工安全理論能力考核試卷含答案
- 碳五石油樹脂裝置操作工崗前理論能力考核試卷含答案
- 野生植物培植工創(chuàng)新應用考核試卷含答案
- 2024年湖南農(nóng)業(yè)大學東方科技學院輔導員招聘備考題庫附答案
- 卷板機操作工安全理論考核試卷含答案
- 2024年鄭州電力高等??茖W校輔導員招聘考試真題匯編附答案
- 農(nóng)貿(mào)市場環(huán)境衛(wèi)生清潔行動工作方案
- 淮安市2022-2023學年七年級上學期期末地理試題
- 2024屆高考語文二輪復習專題-文言文閱讀(上海專用)(解析版)
- 2024可打印的離婚協(xié)議書模板
- 2024屆廣東省深圳市中考物理模擬試卷(一模)(附答案)
- 《房顫的藥物治療》課件
- 診所污水處理管理制度
- 輔導員工作的職責與使命課件
- 新疆交通職業(yè)技術學院教師招聘考試歷年真題
- 吊籃租賃安拆分包合同
- (財務知識)用友T財務通普版基本操作詳細資料
評論
0/150
提交評論