版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省平頂山市魯山一中2026屆高三數(shù)學(xué)第一學(xué)期期末檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等比數(shù)列的前項和為,若,,,,則()A. B. C. D.2.已知函數(shù),則()A. B. C. D.3.函數(shù)的圖象可能是()A. B. C. D.4.已知函數(shù),,若對,且,使得,則實數(shù)的取值范圍是()A. B. C. D.5.存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經(jīng)過點,則橢圓離心率的取值范圍是()A. B. C. D.6.若變量,滿足,則的最大值為()A.3 B.2 C. D.107.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.8.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.若,則的虛部是A.3 B. C. D.10.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.11.已知隨機(jī)變量滿足,,.若,則()A., B.,C., D.,12.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點,則此點取自小正六邊形的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿足,其中,,則的值為_______________.14.函數(shù)的定義域為__________.15.點到直線的距離為________16.已知向量,,,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.18.(12分)在四棱錐的底面是菱形,底面,,分別是的中點,.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點的位置;若不存在,說明理由.19.(12分)新型冠狀病毒肺炎疫情發(fā)生以來,電子購物平臺成為人們的熱門選擇.為提高市場銷售業(yè)績,某公司設(shè)計了一套產(chǎn)品促銷方案,并在某地區(qū)部分營銷網(wǎng)點進(jìn)行試點.運(yùn)作一年后,對“采用促銷”和“沒有采用促銷”的營銷網(wǎng)點各選取了50個,對比上一年度的銷售情況,分別統(tǒng)計了它們的年銷售總額,并按年銷售總額增長的百分點分成5組:,分別統(tǒng)計后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長10個百分點及以上的營銷網(wǎng)點為“精英店”.(1)請你根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“精英店與采用促銷活動有關(guān)”;采用促銷沒有采用促銷合計精英店非精英店合計5050100(2)某“精英店”為了創(chuàng)造更大的利潤,通過分析上一年度的售價(單位:元)和日銷量(單位:件)的一組數(shù)據(jù)后決定選擇作為回歸模型進(jìn)行擬合.具體數(shù)據(jù)如下表,表中的:①根據(jù)上表數(shù)據(jù)計算的值;②已知該公司成本為10元/件,促銷費用平均5元/件,根據(jù)所求出的回歸模型,分析售價定為多少時日利潤可以達(dá)到最大.附①:附②:對應(yīng)一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為.20.(12分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.21.(12分)已知曲線C的極坐標(biāo)方程是.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)m值.(2)設(shè)為曲線上任意一點,求的取值范圍.22.(10分)從拋物線C:()外一點作該拋物線的兩條切線PA、PB(切點分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點Q,點在拋物線C上,且(F為拋物線的焦點).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點Q的坐標(biāo);若不能,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因為,所以有:是方程的二實根,又,,所以,故解得:,從而公比;那么,故選D.考點:等比數(shù)列.2、A【解析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.3、A【解析】
先判斷函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結(jié)合排除法可得出正確選項.【詳解】函數(shù)的定義域為,,該函數(shù)為偶函數(shù),排除B、D選項;當(dāng)時,,排除C選項.故選:A.【點睛】本題考查根據(jù)函數(shù)的解析式辨別函數(shù)的圖象,一般分析函數(shù)的定義域、奇偶性、單調(diào)性、零點以及函數(shù)值符號,結(jié)合排除法得出結(jié)果,考查分析問題和解決問題的能力,屬于中等題.4、D【解析】
先求出的值域,再利用導(dǎo)數(shù)討論函數(shù)在區(qū)間上的單調(diào)性,結(jié)合函數(shù)值域,由方程有兩個根求參數(shù)范圍即可.【詳解】因為,故,當(dāng)時,,故在區(qū)間上單調(diào)遞減;當(dāng)時,,故在區(qū)間上單調(diào)遞增;當(dāng)時,令,解得,故在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.又,且當(dāng)趨近于零時,趨近于正無窮;對函數(shù),當(dāng)時,;根據(jù)題意,對,且,使得成立,只需,即可得,解得.故選:D.【點睛】本題考查利用導(dǎo)數(shù)研究由方程根的個數(shù)求參數(shù)范圍的問題,涉及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)值域的問題,屬綜合困難題.5、D【解析】
根據(jù)題意利用垂直直線斜率間的關(guān)系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎(chǔ)題.6、D【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點與坐標(biāo)原點的距離的平方,由圖可知到原點的距離最大,故.故選:D【點睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題.7、D【解析】
設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎(chǔ)題.8、B【解析】
分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當(dāng),不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.9、B【解析】
因為,所以的虛部是.故選B.10、C【解析】
根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.11、B【解析】
根據(jù)二項分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因為隨機(jī)變量滿足,,.所以服從二項分布,由二項分布的性質(zhì)可得:,因為,所以,由二次函數(shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【點睛】本題主要考查二項分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.12、D【解析】
設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質(zhì)可得,再令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),可得,所以.②根據(jù)①②得出,.所以.故答案為.【點睛】本題主要考查等差數(shù)列、等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.14、【解析】
根據(jù)函數(shù)成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數(shù)有意義,則,即.則定義域為:.故答案為:【點睛】本題主要考查定義域的求解,要熟練掌握張建函數(shù)成立的條件.15、2【解析】
直接根據(jù)點到直線的距離公式即可求出。【詳解】依據(jù)點到直線的距離公式,點到直線的距離為?!军c睛】本題主要考查點到直線的距離公式的應(yīng)用。16、2【解析】
由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點睛】本題主要考查了向量的坐標(biāo)運(yùn)算,向量垂直的性質(zhì),向量的模的計算.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)4.【解析】
(1)利用三角形的面積公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,進(jìn)而求得,利用同角三角函數(shù)的基本關(guān)系式求得.【詳解】(1)在中,由面積公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,為銳角.【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形面積公式,考查同角三角函數(shù)的基本關(guān)系式,屬于中檔題.18、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】
(Ⅰ)由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;(Ⅱ)建立空間直角坐標(biāo)系,求得直線的方向向量與平面的一個法向量,然后求解線面角的正弦值即可;(Ⅲ)假設(shè)滿足題意的點存在,設(shè),由直線與的方向向量得到關(guān)于的方程,解方程即可確定點F的位置.【詳解】(Ⅰ)由菱形的性質(zhì)可得:,結(jié)合三角形中位線的性質(zhì)可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結(jié)合菱形的性質(zhì)易知,,,以點O為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則:,設(shè)平面的一個法向量為,則:,據(jù)此可得平面的一個法向量為,而,設(shè)直線與平面所成角為,則.(Ⅲ)由題意可得:,假設(shè)滿足題意的點存在,設(shè),,據(jù)此可得:,即:,從而點F的坐標(biāo)為,據(jù)此可得:,,結(jié)合題意有:,解得:.故點F為中點時滿足題意.【點睛】本題主要考查線面垂直的判定定理與性質(zhì)定理,線面角的向量求法,立體幾何中的探索性問題等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.19、(1)列聯(lián)表見解析,有把握;(2)①;②元時【解析】
(1)直接由題意列出列聯(lián)表,通過計算,可判斷精英店與采用促銷活動是否有關(guān).(2)①代入表中數(shù)據(jù),結(jié)合公式求出;②由①中所得的線性回歸方程,若售價為,單價利潤為,日銷售量為,進(jìn)而可求出日利潤,結(jié)合導(dǎo)數(shù)可求最值.【詳解】解:(1)由題意知,采用促銷中精英店的數(shù)量為,采用促銷中非精英店的數(shù)量為;沒有采用促銷中精英店的數(shù)量為,沒有采用促銷中非精英店的數(shù)量為,列聯(lián)表為采用促銷沒有采用促銷合計精英店352055非精英店153045合計5050100因為有的把握認(rèn)為“精英店與采用促銷活動有關(guān)”.(2)①由公式可得:所以回歸方程為②若售價為,單件利潤為,日銷售為,故日利潤,解得.當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.故當(dāng)售價元時,日利潤達(dá)到最大為元.【點睛】本題考查了獨立性檢驗,考查了線性回歸方程的求法,考查了函數(shù)最值的求解.在求函數(shù)的最值時,常用的方法有:函數(shù)圖像法、結(jié)合函數(shù)單調(diào)性分析最值、基本不等式法、導(dǎo)數(shù)法.其中最常用的還是導(dǎo)數(shù)法.20、t=1【解析】
把變形為結(jié)合基本不等式進(jìn)行求解.【詳解】因為即,當(dāng)且僅當(dāng),,時,上述等號成立,所以,即,又x,y,z>0,所以xyzt=1.【點睛】本題主要考查基本不等式的應(yīng)用,利用基本不等式求解最值時要注意轉(zhuǎn)化為適用形式,同時要關(guān)注不等號是否成立,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).21、(1)或;(2).【解析】
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,在直角坐標(biāo)條件下求出曲線的圓心坐標(biāo)和半徑,將直線的參數(shù)方程化為普
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年河南信息統(tǒng)計職業(yè)學(xué)院單招職業(yè)技能考試參考題庫帶答案解析
- 2026年福建農(nóng)林大學(xué)金山學(xué)院單招職業(yè)技能考試模擬試題帶答案解析
- 醫(yī)療人才培養(yǎng)與儲備計劃
- 2026年常州紡織服裝職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試備考題庫有答案解析
- 2026年阜陽幼兒師范高等專科學(xué)校單招職業(yè)技能筆試備考試題帶答案解析
- 0年度醫(yī)療設(shè)備采購回顧
- 2026年阜陽職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性考試備考題庫帶答案解析
- 2026年武夷學(xué)院單招職業(yè)技能考試模擬試題附答案詳解
- 醫(yī)學(xué)知識傳播技巧
- 氣相培訓(xùn)題庫及答案
- 2025年湖北警官學(xué)院馬克思主義基本原理概論期末考試真題匯編
- 河道工程測量施工方案
- 2025嵐圖汽車社會招聘參考題庫及答案解析(奪冠)
- 2025河南周口臨港開發(fā)區(qū)事業(yè)單位招才引智4人考試重點題庫及答案解析
- 2025年無人機(jī)資格證考試題庫+答案
- 登高作業(yè)監(jiān)理實施細(xì)則
- DB42-T 2462-2025 懸索橋索夾螺桿緊固力超聲拉拔法檢測技術(shù)規(guī)程
- 大學(xué)生擇業(yè)觀和創(chuàng)業(yè)觀
- 車載光通信技術(shù)發(fā)展及無源網(wǎng)絡(luò)應(yīng)用前景
- 工程倫理-形考任務(wù)四(權(quán)重20%)-國開(SX)-參考資料
- 初中書香閱讀社團(tuán)教案
評論
0/150
提交評論