版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
金太陽廣東省2026屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知空間向量,則()A. B.C. D.2.某校開展研學(xué)活動(dòng)時(shí)進(jìn)行勞動(dòng)技能比賽,通過初選,選出共6名同學(xué)進(jìn)行決賽,決出第1名到第6名的名次(沒有并列名次),和去詢問成績,回答者對說“很遺?,你和都末拿到冠軍;對說“你當(dāng)然不是最差的”.試從這個(gè)回答中分析這6人的名次排列順序可能出現(xiàn)的結(jié)果有()A.720種 B.600種C.480種 D.384種3.某公司有320名員工,將這些員工編號(hào)為1,2,3,…,320,從這些員工中使用系統(tǒng)抽樣的方法抽取20人進(jìn)行“學(xué)習(xí)強(qiáng)國”的問卷調(diào)查,若54號(hào)被抽到,則下面被抽到的是()A.72號(hào) B.150號(hào)C.256號(hào) D.300號(hào)4.直線過雙曲線:的右焦點(diǎn),在第一、第四象限交雙曲線兩條漸近線分別于P,Q兩點(diǎn),若∠OPQ=90°(O為坐標(biāo)原點(diǎn)),則OPQ內(nèi)切圓的半徑為()A. B.C.1 D.5.等比數(shù)列中,,則()A. B.C.2 D.46.中,內(nèi)角A,B,C的對邊分別為a,b,c,若,則等于()A. B.C. D.7.一物體做直線運(yùn)動(dòng),其位移(單位:)與時(shí)間(單位:)的關(guān)系是,則該物體在時(shí)的瞬時(shí)速度是A. B.C. D.8.若方程表示圓,則實(shí)數(shù)的取值范圍為()A. B.C. D.9.已知函數(shù)在上單調(diào)遞減,則實(shí)數(shù)的取值范圍是()A. B.C. D.10.已知,記M到x軸的距離為a,到y(tǒng)軸的距離為b,到z軸的距離為c,則()A. B.C. D.11.若數(shù)列的前項(xiàng)和,則此數(shù)列是()A.等差數(shù)列 B.等比數(shù)列C.等差數(shù)列或等比數(shù)列 D.以上說法均不對12.等軸雙曲線漸近線是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列的前n項(xiàng)和為,且滿足,則_____________14.已知雙曲線:,斜率為的直線與E的左右兩支分別交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為,直線AP交E于另一點(diǎn)C,直線BP交E于另一點(diǎn)D.若直線CD的斜率為,則E的離心率為___________15.已知橢圓與坐標(biāo)軸依次交于A,B,C,D四點(diǎn),則四邊形ABCD面積為_____.16.已知關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在處的切線與直線平行(1)求值,并求此切線方程;(2)證明:18.(12分)已知為坐標(biāo)原點(diǎn),圓的圓心在軸上,點(diǎn)、均在圓上.(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線與橢圓交于兩個(gè)不同的點(diǎn)、,點(diǎn)在圓上,求面積的最大值.19.(12分)已知函數(shù)的圖像為曲線,點(diǎn)、.(1)設(shè)點(diǎn)為曲線上在第一象限內(nèi)的任意一點(diǎn),求線段的長(用表示);(2)設(shè)點(diǎn)為曲線上任意一點(diǎn),求證:為常數(shù);(3)由(2)可知,曲線為雙曲線,請研究雙曲線的性質(zhì)(從對稱性、頂點(diǎn)、漸近線、離心率四個(gè)角度進(jìn)行研究).20.(12分)在正方體中,、、分別是、、的中點(diǎn)(1)證明:平面平面;(2)證明:21.(12分)已知橢圓C:的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為2.(1)橢圓C的方程;(2)設(shè)直線l:交橢圓C于A,B兩點(diǎn),且,求m的值.22.(10分)已知圓C過兩點(diǎn),,且圓心C在直線上(1)求圓C的方程;(2)過點(diǎn)作圓C的切線,求切線方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】A利用向量模長的坐標(biāo)表示判斷;B根據(jù)向量平行的判定,是否存在實(shí)數(shù)使即可判斷;C向量數(shù)量積的坐標(biāo)表示求即可判斷;D利用向量坐標(biāo)的線性運(yùn)算及數(shù)量積的坐標(biāo)表示求即可.【詳解】因?yàn)椋訟不正確:因?yàn)椴淮嬖趯?shí)數(shù)使,所以B不正確;因?yàn)?,故,所以C正確;因?yàn)?,所以,所以D不正確故選:C2、D【解析】不是第一名且不是最后一名,的限制最多,先排有4種情況,再排,也有4種情況,余下的問題是4個(gè)元素在4個(gè)位置全排列,根據(jù)分步計(jì)數(shù)原理求解即可【詳解】由題意,不是第一名且不是最后一名,的限制最多,故先排,有4種情況,再排,也有4種情況,余下4人有種情況,利用分步相乘計(jì)數(shù)原理知有種情況故選:D.3、B【解析】根據(jù)系統(tǒng)抽樣分成20個(gè)小組,每組16人中抽一人,故抽到的序號(hào)相差16的整數(shù)倍,即可求解.【詳解】∵用系統(tǒng)抽樣的方法從320名員工中抽取一個(gè)容量為20的樣本∴,即每隔16人抽取一人∵54號(hào)被抽到∴下面被抽到的是54+16×6=150號(hào),而其他選項(xiàng)中的數(shù)字不滿足與54相差16的整數(shù)倍,故答案為:B故選:B4、B【解析】根據(jù)漸近線的對稱性,結(jié)合銳角三角函數(shù)定義、正切的二倍角公式、直角三角形內(nèi)切圓半徑公式進(jìn)行求解即可.【詳解】由雙曲線標(biāo)準(zhǔn)方程可知:,雙曲線的漸近線方程為:,因此,因?yàn)椤螼PQ=90°,所以三角形是直角三角形,,而,解得:,由雙曲線漸近線的對稱性可知:,于是有,在直角三角形中,,由勾股定理可知:,設(shè)OPQ內(nèi)切圓的半徑為,于是有:,即,故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用三角形內(nèi)切圓的性質(zhì)是解題的關(guān)鍵.5、D【解析】利用等比數(shù)列的下標(biāo)特點(diǎn),即可得到結(jié)果.【詳解】∵,∴,∴,∴.故選:D6、A【解析】由題得,進(jìn)而根據(jù)余弦定理求解即可.【詳解】解:依題意,即,所以,所以,由于,所以故選:A7、A【解析】先對求導(dǎo),然后將代入導(dǎo)數(shù)式,可得出該物體在時(shí)的瞬時(shí)速度【詳解】對求導(dǎo),得,,因此,該物體在時(shí)的瞬時(shí)速度為,故選A【點(diǎn)睛】本題考查瞬時(shí)速度的概念,考查導(dǎo)數(shù)與瞬時(shí)變化率之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題8、D【解析】將方程化為標(biāo)準(zhǔn)式即可.【詳解】方程化為標(biāo)準(zhǔn)式得,則.故選:D.9、A【解析】由題意,在上恒成立,只需滿足即可求解.【詳解】解:因?yàn)?,所以,因?yàn)楹瘮?shù)在上單調(diào)遞減,所以在上恒成立,只需滿足,即,解得故選:A.10、C【解析】分別求出點(diǎn)M在x軸,y軸,z軸上的投影點(diǎn)的坐標(biāo),再借助空間兩點(diǎn)間距離公式計(jì)算作答.【詳解】設(shè)點(diǎn)M在x軸上的投影點(diǎn),則,而x軸的方向向量,由得:,解得,則,設(shè)點(diǎn)M在y軸上的投影點(diǎn),則,而y軸的方向向量,由得:,解得,則,設(shè)點(diǎn)M在z軸上的投影點(diǎn),則,而z軸的方向向量,由得:,解得,則,所以.故選:C11、D【解析】利用數(shù)列通項(xiàng)與前n項(xiàng)和的關(guān)系和等差數(shù)列及等比數(shù)列的定義判斷.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,所以是等差數(shù)列;當(dāng)時(shí),為非等差數(shù)列,非等比數(shù)列’當(dāng)時(shí),,所以是等比數(shù)列,故選:D12、A【解析】對等軸雙曲線的焦點(diǎn)的位置進(jìn)行分類討論,可得出等軸雙曲線的漸近線方程.【詳解】因?yàn)?,若雙曲線的焦點(diǎn)在軸上,則等軸雙曲線的漸近線方程為;若雙曲線的焦點(diǎn)在軸上,則等軸雙曲線的漸近線方程為.綜上所述,等軸雙曲線的漸近線方程為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##31.5【解析】根據(jù)等比數(shù)列通項(xiàng)公式,求出,代入求和公式,即可得答案.【詳解】因?yàn)閿?shù)列為等比數(shù)列,所以,又,所以,所以.故答案為:14、【解析】分別設(shè)線段的中點(diǎn),線段的中點(diǎn),再利用點(diǎn)差法可表示出,由平行關(guān)系易知三點(diǎn)共線,從而利用斜率相等的關(guān)系構(gòu)造方程,代入整理可得到關(guān)系,利用雙曲線得到關(guān)于的齊次方程,進(jìn)而求得離心率.【詳解】設(shè),,線段的中點(diǎn),兩式相減得:…①設(shè),,線段的中點(diǎn)同理可得:…②,易知三點(diǎn)共線,將①②代入得:,所以,即,由題意可得,故.∴,即故答案為:15、【解析】根據(jù)橢圓的方程,求得頂點(diǎn)的坐標(biāo),結(jié)合菱形的面積公式,即可求解.【詳解】由題意,橢圓,可得,可得,所以橢圓與坐標(biāo)軸的交點(diǎn)分別為,此時(shí)構(gòu)成的四邊形為菱形,則面積為.故答案為:.16、【解析】參變分離,可得,設(shè),求導(dǎo)分析單調(diào)性,可得,即得解【詳解】因?yàn)?,所以不等式可化為,設(shè),則,設(shè),由于故在上單調(diào)遞增,且,則當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,所以,則,即.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);;(2)證明見解析.【解析】(1)根據(jù)導(dǎo)數(shù)幾何意義可知,解方程求得,進(jìn)而得到切線方程;(2)當(dāng)時(shí),由,知不等式成立;當(dāng)時(shí),令,利用導(dǎo)數(shù)可求得在上單調(diào)遞增,從而得到,由此可得結(jié)論.【小問1詳解】,,在處的切線與直線平行,即切線斜率為,,解得:,,,所求切線方程為:,即;【小問2詳解】要證,即證;①當(dāng)時(shí),,,,即,;②當(dāng)時(shí),令,,,當(dāng)時(shí),,,,,即,在上單調(diào)遞增,,在上單調(diào)遞增,,即在上恒成立;綜上所述:.【點(diǎn)睛】思路點(diǎn)睛:本題第二問考查利用導(dǎo)數(shù)證明不等式的問題,解題的基本思路是將問題轉(zhuǎn)化為函數(shù)最值的求解問題;通過構(gòu)造函數(shù),利用導(dǎo)數(shù)求函數(shù)最值的方法可確定恒成立,從而得到所證結(jié)論.18、(1);(2).【解析】(1)求出圓心坐標(biāo),可求得圓的半徑,進(jìn)而可得出圓的標(biāo)準(zhǔn)方程;(2)求得點(diǎn)到直線的距離,將直線的方程與橢圓的方程聯(lián)立,求得的表達(dá)式,利用三角形的面積公式結(jié)合基本不等式可求得結(jié)果.【小問1詳解】解:由題知,線段的中點(diǎn)為,直線的斜率,所以線段的中垂線為,即為,所以圓的圓心為軸與的交點(diǎn),所以圓的半徑,所以圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:由題知:圓心到直線的距離,因?yàn)?,所以圓心到直線的距離,所以到直線的距離,設(shè)點(diǎn)、,聯(lián)立可得,,,則,所以,,所以,所以,所以當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以當(dāng)時(shí),取得最大值.【點(diǎn)睛】方法點(diǎn)睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值19、(1);(2)具體見解析;(3)具體見解析.【解析】(1)由兩點(diǎn)間的距離公式求出距離,進(jìn)而將式子化簡即可;(2)求出,進(jìn)而討論兩種情況,然后結(jié)合基本不等式即可證明問題;(3)根據(jù)為雙曲線的焦點(diǎn),結(jié)合雙曲線的圖形特征即可求得該雙曲線的相關(guān)性質(zhì).【小問1詳解】由題意,.【小問2詳解】設(shè),由(1),.若x>0,則,當(dāng)且僅當(dāng)時(shí)取“=”,則,,所以.若x<0,則,當(dāng)且僅當(dāng)時(shí)取“=”,則,,所以.綜上:,為常數(shù).【小問3詳解】易知函數(shù):為奇函數(shù),則其圖象關(guān)于原點(diǎn)對稱.由(2)可知,曲線為雙曲線,為雙曲線的焦點(diǎn),則它關(guān)于直線對稱,還關(guān)于與垂直且過原點(diǎn)的直線對稱.,則,易得.綜上:雙曲線關(guān)于原點(diǎn)(0,0)對稱,且關(guān)于直線對稱.容易知道,直線是雙曲線C的漸近線.易知線段是雙曲線的實(shí)軸,將代入雙曲線解得頂點(diǎn):.于是實(shí)軸長為焦距為,則離心率.20、(1)證明見解析;(2)證明見解析.【解析】(1)連接,分別證明出平面,平面,利用面面平行的判定定理可證得結(jié)論成立;(2)證明出平面,利用線面垂直的性質(zhì)可證得結(jié)論成立.【小問1詳解】證明:連接,在正方體中,,,所以,四邊形為平行四邊形,所以,在中,、分別為、的中點(diǎn),所以,,所以,,因?yàn)槠矫?,平面,所以,平面因?yàn)榍?,、分別為、的中點(diǎn),則且,所以,四邊形為平行四邊形,則,,平面,平面,平面又,所以,平面平面【小問2詳解】證明:在正方體中,平面,平面,,因?yàn)樗倪呅螢檎叫危瑒t,因?yàn)椋瑒t平面由知(1)平面平面,所以,平面,平面,因此,21、(1);(2).【解析】(1)通過短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離可知,進(jìn)而利用離心率的值計(jì)算即得結(jié)論;(2)設(shè),聯(lián)立直線與橢圓方程,消去y得到關(guān)于x的一元二次方程,得到根與系數(shù)的關(guān)系,再利用弦長公式即可得出.【詳解】解:(1)由題意可得,解得:,,橢圓C的方程為;(2)設(shè),聯(lián)立,得,,,,解得.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、韋達(dá)定理、弦長公式,屬于中檔題.22、(1).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工地物料管理與環(huán)保措施結(jié)合方案
- 2025年男科疾病生物樣本采集知情同意書
- 2026年動(dòng)感電影座椅維修合同
- (2025年)儀表工基礎(chǔ)知識(shí)試題及答案大全
- 2025年橋隧考試試題及答案
- 2025年古代學(xué)子考試試題及答案
- 2026年大學(xué)大二(人力資源管理)員工關(guān)系協(xié)調(diào)階段測試試題及答案
- 2026年大學(xué)大二(老年護(hù)理)老年慢性病照護(hù)綜合測試題及答案
- 快餐連鎖品牌標(biāo)準(zhǔn)化運(yùn)營管理方案
- 高速公路橋梁檢測方案模板
- 臘味宣傳課件及教案
- 2025-2030中國壓縮餅干市場銷售渠道與未來競爭力優(yōu)勢分析報(bào)告
- T/CCPITCSC 120-2023中國品牌影響力評價(jià)通則
- 醫(yī)學(xué)檢驗(yàn)免疫課件
- 農(nóng)村土地永久性轉(zhuǎn)讓合同
- 中建市政道路施工組織設(shè)計(jì)方案
- 財(cái)務(wù)先進(jìn)個(gè)人代表演講稿
- 年度得到 · 沈祖蕓全球教育報(bào)告(2024-2025)
- DB23T 2689-2020養(yǎng)老機(jī)構(gòu)院內(nèi)感染預(yù)防控制規(guī)范
- 2025屆天津市和平區(qū)名校高三最后一模語文試題含解析
- 建筑施工現(xiàn)場污水處理措施方案
評論
0/150
提交評論