平煤高級中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第1頁
平煤高級中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第2頁
平煤高級中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第3頁
平煤高級中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第4頁
平煤高級中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

平煤高級中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)點P是雙曲線,與圓在第一象限的交點,、分別是雙曲線的左、右焦點,且,則此雙曲線的離心率為()A. B.C. D.32.2021年7月,某文學(xué)網(wǎng)站對該網(wǎng)站的數(shù)字媒體內(nèi)容能否滿足讀者需要進行了調(diào)查,調(diào)查部門隨機抽取了名讀者,所得情況統(tǒng)計如下表所示:滿意程度學(xué)生族上班族退休族滿意一般不滿意記滿分為分,一般為分,不滿意為分.設(shè)命題:按分層抽樣方式從不滿意的讀者中抽取人,則退休族應(yīng)抽取人;命題:樣本中上班族對數(shù)字媒體內(nèi)容滿意程度的方差為.則下列命題中為真命題的是()A. B.C. D.3.觀察下列各式:,,,,,可以得出的一般結(jié)論是A.B.C.D.4.、是橢圓的左、右焦點,點在橢圓上,,過作的角平分線的垂線,垂足為,則的長為A.1 B.2C.3 D.45.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分又不必要條件6.已知、分別是雙曲線的左、右焦點,為一條漸近線上的一點,且,則的面積為()A. B.C. D.17.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.8.已知點,在雙曲線上,線段的中點,則()A. B.C. D.9.若直線被圓截得的弦長為,則的最小值為()A. B.C. D.10.已知雙曲線:與橢圓:有相同的焦點,且一條漸近線方程為:,則雙曲線的方程為()A. B.C. D.11.《九章算術(shù)》第三章“衰分”介紹比例分配問題:“衰分”是按比例遞減分配的意思,通常稱遞減的比例(即百分比)為“衰分比”.如:甲、乙、丙、丁分別分得,,,,遞減的比例為,那么“衰分比”就等于,今共有糧石,按甲、乙、丙、丁的順序進行“衰分”,已知乙分得石,甲、丙所得之和為石,則“衰分比”為()A. B.C. D.12.已知F是拋物線x2=y(tǒng)的焦點,A、B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到x軸的距離為()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,莖葉圖所示數(shù)據(jù)平均分為91,則數(shù)字x應(yīng)該是__________14.寫出一個數(shù)列的通項公式____________,使它同時滿足下列條件:①,②,其中是數(shù)列的前項和.(寫出滿足條件的一個答案即可)15.已知函數(shù),則曲線在點處的切線方程為______.16.若“”是“”必要不充分條件,則實數(shù)的最大值為_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓上的點到焦點的最大距離為3,離心率為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓交于不同兩點,與軸交于點,且滿足,若,求實數(shù)的取值范圍.18.(12分)已知三棱柱的側(cè)棱垂直于底面,,,,,分別是,的中點.(Ⅰ)證明:平面;(Ⅱ)求二面角的余弦值.19.(12分)已知圓經(jīng)過,且圓心C在直線上(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線:與圓存在公共點,求實數(shù)的取值范圍20.(12分)在下面兩個條件中任選一個條件,補充在后面問題中的橫線上,并完成解答.條件①:展開式前三項的二項式系數(shù)的和等于37;條件②:第3項與第7項的二項式系數(shù)相等;問題:在二項式的展開式中,已知__________.(1)求展開式中二項式系數(shù)最大的項;(2)設(shè),求的值;(3)求的展開式中的系數(shù).21.(12分)已知數(shù)列為等差數(shù)列,是公比為2的等比數(shù)列,且滿足(1)求數(shù)列和的通項公式;(2)令求數(shù)列的前n項和;22.(10分)如圖,直三棱柱中,,,是棱的中點,(1)求異面直線所成角的余弦值;(2)求二面角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)幾何關(guān)系得到是直角三角形,然后由雙曲線的定義及勾股定理可求解.【詳解】點到原點的距離為,又因為在中,,所以是直角三角形,即.由雙曲線定義知,又因為,所以.在中,由勾股定理得,化簡得,所以.故選:C.2、A【解析】由抽樣比再乘以可得退休族應(yīng)抽取人數(shù)可判斷命題,求出上班族對數(shù)字媒體內(nèi)容滿意程度的平均分,由方差公式計算方差可判斷,再由復(fù)合命題的真假判斷四個選項,即可得正確選項.【詳解】因為退休族應(yīng)抽取人,所以命題正確;樣本中上班族對數(shù)字媒體內(nèi)容滿意程度的平均分為,方差為,命題正確,所以為真,、、為假命題,故選:3、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以歸納:左邊每一個式子均有2n-1項,且第一項為n,則最后一項為3n-2右邊均為2n-1的平方故選C點睛:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想)4、A【解析】延長交延長線于N,則選:A.【點睛】涉及兩焦點問題,往往利用橢圓定義進行轉(zhuǎn)化研究,而角平分線性質(zhì)可轉(zhuǎn)化到焦半徑問題,兩者切入點為橢圓定義.5、B【解析】根據(jù)充分條件和必要條件的定義判斷即可求解.【詳解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分條件,故選:B.6、A【解析】先表示出漸近線方程,設(shè)出點坐標(biāo),利用,解出點坐標(biāo),再按照面積公式求解即可.【詳解】由題意知,雙曲線漸近線方程為,不妨設(shè)在上,設(shè),由得,解得,的面積為.故選:A.7、C【解析】作出輔助線,找到異面直線與所成角,進而利用余弦定理及勾股定理求出各邊長,最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補成四棱柱,異面直線與所成角為,由勾股定理得:,,∴故選:C8、D【解析】先根據(jù)中點弦定理求出直線的斜率,然后求出直線的方程,聯(lián)立后利用弦長公式求解的長.【詳解】設(shè),,則可得方程組:,兩式相減得:,即,其中因為的中點為,故,故,即直線的斜率為,故直線的方程為:,聯(lián)立,解得:,由韋達(dá)定理得:,,則故選:D9、D【解析】先根據(jù)已知條件得出,再利用基本不等式求的最小值即可.【詳解】圓的標(biāo)準(zhǔn)方程為,圓心為,半徑為,若直線被截得弦長為,說明圓心在直線:上,即,即,∴,當(dāng)且僅當(dāng),即時,等號成立故選:D.【點睛】本題主要考查利用基本不等式求最值,本題關(guān)鍵是求出,屬常規(guī)考題.10、B【解析】由漸近線方程,設(shè)出雙曲線方程,結(jié)合與橢圓有相同的焦點,求出雙曲線方程.【詳解】∵雙曲線:的一條漸近線方程為:∴設(shè)雙曲線:∵雙曲線與橢圓有相同的焦點∴,解得:∴雙曲線的方程為.故選:B.11、A【解析】根據(jù)題意,設(shè)衰分比為,甲分到石,,然后可得和,解出、的值即可【詳解】根據(jù)題意,設(shè)衰分比為,甲分到石,,又由今共有糧食石,按甲、乙、丙、丁的順序進行“衰分”,已知乙分得90石,甲、丙所得之和為164石,則,,解得:,,故選:A12、B【解析】根據(jù)拋物線的方程求出準(zhǔn)線方程,利用拋物線的定義拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,列出方程求出,的中點縱坐標(biāo),求出線段的中點到軸的距離【詳解】解:拋物線的焦點準(zhǔn)線方程,設(shè),,,解得,線段的中點縱坐標(biāo)為,線段的中點到軸的距離為,故選:B【點睛】本題考查解決拋物線上的點到焦點的距離問題,利用拋物線的定義將到焦點的距離轉(zhuǎn)化為到準(zhǔn)線的距離,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】結(jié)合莖葉圖以及平均數(shù)列出方程,即可求出結(jié)果.【詳解】由題意可知,解得,故答案為:1.14、(答案合理即可)【解析】當(dāng)時滿足,利用作差比較法即可證明.【詳解】解:當(dāng)時滿足條件①②,證明如下:因為,所以;當(dāng)時,;當(dāng)時,;綜上,.故答案為:(答案合理即可).15、【解析】先求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義求函數(shù)在處的切線方程.【詳解】,,,所以曲線在點處的切線方程為,即.故答案為:【點睛】本題考查導(dǎo)數(shù)的幾何意義,重點考查計算能力,屬于基礎(chǔ)題型.16、【解析】設(shè)的解集為集合,由題意可得是的真子集,即可求解.【詳解】由得或,因為“”是“”的必要不充分條件,設(shè)或,,因為“”是“”的必要不充分條件,所以是的真子集,所以故答案為:【點睛】結(jié)論點睛:本題考查充分不必要條件的判斷,一般可根據(jù)如下規(guī)則判斷:(1)若是的必要不充分條件,則對應(yīng)集合是對應(yīng)集合的真子集;(2)是的充分不必要條件,則對應(yīng)集合是對應(yīng)集合的真子集;(3)是的充分必要條件,則對應(yīng)集合與對應(yīng)集合相等;(4)是的既不充分又不必要條件,對的集合與對應(yīng)集合互不包含三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),或【解析】(1)由橢圓的性質(zhì)可知:,解得a和c的值,即可求得橢圓C的標(biāo)準(zhǔn)方程;(2)將直線方程代入橢圓方程,由韋達(dá)定理求得:,,λ,根據(jù)向量的坐標(biāo)坐標(biāo),(x1+1,y1)=λ(x2+1,y2),求得,由,代入即可求得實數(shù)m的取值范圍【詳解】(1)由已知,解得,所以,所以橢圓的標(biāo)準(zhǔn)方程為.(2)由已知,設(shè),聯(lián)立方程組,消得,由韋達(dá)定理得①②因為,所以,所以③,將③代入①②,,消去得,所以.因為,所以,即,解得,所以,或.【點睛】本題考查橢圓的標(biāo)準(zhǔn)方程及簡單性質(zhì),直線與橢圓的位置關(guān)系,韋達(dá)定理,向量的坐標(biāo)表示,不等式的解法,考查計算能力,屬于中檔題18、(1)見解析;(2).【解析】分析:依題意可知兩兩垂直,以點為原點建立空間直角坐標(biāo)系,(1)利用直線的方向向量和平面的法向量垂直,即可證得線面平面;(2)求出兩個平面的法向量,利用兩個向量的夾角公式,即可求解二面角的余弦值.詳解:依條件可知、、兩兩垂直,如圖,以點為原點建立空間直角坐標(biāo)系.根據(jù)條件容易求出如下各點坐標(biāo):,,,,,,,.(Ⅰ)證明:∵,,是平面的一個法向量,且,所以.又∵平面,∴平面;(Ⅱ)設(shè)是平面的法向量,因為,,由,得.解得平面的一個法向量,由已知,平面的一個法向量為,,∴二面角的余弦值是.點睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴(yán)密推理,明確角的構(gòu)成.同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.19、(1)(2)【解析】(1)因為圓心在直線上,可設(shè)圓心坐標(biāo)為,利用圓心到圓上兩點的距離相等列出等式求解即可.(2)直線與圓存在公共點,即圓心到直線的距離小于等于半徑,列出不等關(guān)系求解即可.【小問1詳解】解:因為圓心在直線上,所以設(shè)圓心坐標(biāo)為,因為圓經(jīng)過,,所以,即:,解方程得,圓心坐標(biāo)為,半徑為,圓的標(biāo)準(zhǔn)方程為:【小問2詳解】圓心到直線的距離且直線與圓有公共點即20、(1)答案見解析(2)0(3)560【解析】(1)選擇①,由,得,選擇②,由,得;(2)利用賦值法可求解;(3)分兩個部分求解后再求和即可.【小問1詳解】選擇①,因為,解得,所以展開式中二項式系數(shù)最大的項為選擇②,因為,解得,所以展開式中二項式系數(shù)最大的項為【小問2詳解】令,則,令,則,所以,【小問3詳解】因為所以的展開式中含的項為:所以展開式中的系數(shù)為560.21、(1),(2)【解析】(1)根據(jù)等差數(shù)列和等比數(shù)列通項公式得到,根據(jù)通項公式的求法得到結(jié)果;(2)分組求和即可.【小問1詳解】設(shè)的公差為,由已知,有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論