2026屆湖南省邵陽市邵東縣創(chuàng)新實驗學校高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
2026屆湖南省邵陽市邵東縣創(chuàng)新實驗學校高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
2026屆湖南省邵陽市邵東縣創(chuàng)新實驗學校高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
2026屆湖南省邵陽市邵東縣創(chuàng)新實驗學校高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
2026屆湖南省邵陽市邵東縣創(chuàng)新實驗學校高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆湖南省邵陽市邵東縣創(chuàng)新實驗學校高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在下列圖象中,函數(shù)的圖象可能是A. B.C. D.2.函數(shù)f(x)=lnx﹣1的零點所在的區(qū)間是A(1,2) B.(2,3)C.(3,4) D.(4,5)3.已知空間直角坐標系中,點關于軸的對稱點為,則點的坐標為A. B.C. D.4.已知p:﹣2<x<2,q:﹣1<x<2,則p是q的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.不等式的解集為,則實數(shù)的取值范圍是()A. B.C. D.6.函數(shù)的零點個數(shù)為(

)A.1 B.2C.3 D.47.函數(shù)f(x)=+的定義域為()A. B.C. D.8.函數(shù)單調遞增區(qū)間為A. B.C. D.9.不等式的解集為,則()A. B.C. D.10.四個函數(shù):①;②;③;④的圖象(部分)如下,但順序被打亂,則按照從左到右將圖象對應的函數(shù)序號安排正確的一組是()A.④①②③ B.①④②③C.③④②① D.①④③②二、填空題:本大題共6小題,每小題5分,共30分。11.漏斗作為中國傳統(tǒng)器具而存在于日常生活之中,某漏斗有蓋的三視圖如圖所示,其中俯視圖為正方形,則該漏斗的容積為不考慮漏斗的厚度______,若該漏斗存在外接球,則______.12.函數(shù)的圖像恒過定點___________13.已知為三角形的邊的中點,點滿足,則實數(shù)的值為_______14.已知,,則___________.15.若,則的最小值是___________,此時___________.16.已知,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知OPQ是半徑為1,圓心角為2θ(θ為定值)的扇形,A是扇形弧上的動點,四邊形ABCD是扇形內的內接矩形,記∠AOP=(0<<θ)(1)用表示矩形ABCD的面積S;(2)若θ=,求當取何值時,矩形面積S最大?并求出這個最大面積18.已知函數(shù).(1)若在上的最大值為,求的值;(2)若為的零點,求證:.19.已知平面向量.(1)求與的夾角的余弦值;(2)若向量與互相垂直,求實數(shù)的值.20.如圖所示,正方體的棱長為,過頂點、、截下一個三棱錐.(1)求剩余部分的體積;(2)求三棱錐的高.21.已知函數(shù),.(1)求的最小正周期;(2)求在區(qū)間上的最大值和最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)函數(shù)的概念,可作直線從左向右在定義域內移動,得到直線與曲線的交點個數(shù),即可判定.【詳解】由函數(shù)的概念可知,任意一個自變量的值對應的因變量的值是唯一的,可作直線從左向右在定義域內移動,得到直線與曲線的交點個數(shù)是0或1,顯然A、B、D均不滿足函數(shù)的概念,只有選項C滿足.故選:C.【點睛】本題主要考查了函數(shù)概念,以及函數(shù)的圖象及函數(shù)的表示,其中解答中正確理解函數(shù)的基本概念是解答的關鍵,著重考查了數(shù)形結合思想的應用.2、B【解析】∵,在遞增,而,∴函數(shù)的零點所在的區(qū)間是,故選B.3、C【解析】∵在空間直角坐標系中,點(x,y,z)關于z軸的對稱點的坐標為:(﹣x,﹣y,z),∴點關于z軸的對稱點的坐標為:故選:C4、B【解析】將相互推導,根據(jù)能否推導的情況判斷出充分、必要條件.【詳解】已知p:﹣2<x<2,q:﹣1<x<2;∴q?p;但p推不出q,∴p是q的必要非充分條件故選:B【點睛】本小題主要考查充分、必要條件的判斷,屬于基礎題.5、C【解析】將不等式的解集為,轉化為不等式的解集為R,分和兩種情況討論求解.【詳解】因為不等式的解集為,所以不等式的解集為R,當,即時,成立;當,即時,,解得,綜上:實數(shù)的取值范圍是故選:C【點睛】本題主要考查一元二次不等式恒成立問題,還考查了分類討論的思想和運算求解的能力,屬于基礎題.6、B【解析】函數(shù)的定義域為,且,即函數(shù)為偶函數(shù),當時,,設,則:,據(jù)此可得:,據(jù)此有:,即函數(shù)是區(qū)間上的減函數(shù),由函數(shù)的解析式可知:,則函數(shù)在區(qū)間上有一個零點,結合函數(shù)的奇偶性可得函數(shù)在R上有2個零點.本題選擇B選項.點睛:函數(shù)零點的求解與判斷方法:(1)直接求零點:令f(x)=0,如果能求出解,則有幾個解就有幾個零點(2)零點存在性定理:利用定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結合函數(shù)的圖象與性質(如單調性、奇偶性)才能確定函數(shù)有多少個零點(3)利用圖象交點的個數(shù):將函數(shù)變形為兩個函數(shù)的差,畫兩個函數(shù)的圖象,看其交點的橫坐標有幾個不同的值,就有幾個不同的零點7、C【解析】根據(jù)分母部位0,被開方數(shù)大于等于0構造不等式組,即可解出結果【詳解】利用定義域的定義可得,解得,即,故選C【點睛】本題考查定義域的求解,需掌握:分式分母不為0,②偶次根式被開方數(shù)大于等于0,③對數(shù)的真數(shù)大于0.8、A【解析】,所以.故選A9、A【解析】由不等式的解集為,得到是方程的兩個根,由根與系數(shù)的關系求出,即可得到答案【詳解】由題意,可得不等式的解集為,所以是方程的兩個根,所以可得,,解得,,所以,故選:A10、B【解析】根據(jù)各個函數(shù)的奇偶性、函數(shù)值的符號,判斷函數(shù)的圖象特征,即可得到【詳解】解:①為偶函數(shù),它的圖象關于軸對稱,故第一個圖象即是;②為奇函數(shù),它的圖象關于原點對稱,它在上的值為正數(shù),在上的值為負數(shù),故第三個圖象滿足;③為奇函數(shù),當時,,故第四個圖象滿足;④,為非奇非偶函數(shù),故它的圖象沒有對稱性,故第二個圖象滿足,故選:B【點睛】思路點睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象.二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.0.5【解析】先將三視圖還原幾何體,然后利用長方體和錐體的體積公式求解容積即可;設該漏斗外接球的半徑為,設球心為,利用,列式求解的值即可.【詳解】由題中的三視圖可得,原幾何體如圖所示,其中,,正四棱錐的高為,,,所以該漏斗的容積為;正視圖為該幾何體的軸截面,設該漏斗外接球的半徑為,設球心為,則,因為,又,所以,整理可得,解得,所以該漏斗存在外接球,則故答案為:①;②.12、【解析】根據(jù)指數(shù)函數(shù)過定點,結合函數(shù)圖像平移變換,即可得過的定點.【詳解】因為指數(shù)函數(shù)(,且)過定點是將向左平移2個單位得到所以過定點.故答案為:.13、【解析】根據(jù)向量減法的幾何意義及向量的數(shù)乘便可由得出,再由D為△ABC的邊BC的中點及向量加法的平行四邊形法則即可得出點D為AP的中點,從而便可得出,這樣便可得出λ的值【詳解】=,所以,D為△ABC的邊BC中點,∴∴如圖,D為AP的中點;∴,又,所以-2.故答案為-2.【點睛】本題考查向量減法的幾何意義,向量的數(shù)乘運算,及向量數(shù)乘的幾何意義,向量加法的平行四邊形法則,共線向量基本定理,屬于中檔題.14、【解析】根據(jù)余弦值及角的范圍,應用同角的平方關系求.【詳解】由,,則.故答案為:.15、①.1②.0【解析】利用基本不等式求解.【詳解】因為,所以,當且僅當,即時,等號成立,所以其最小值是1,此時0,故答案為:1,016、##【解析】首先根據(jù)同角三角函數(shù)的基本關系求出,再利用二倍角公式及同角三角函數(shù)的基本關系將弦化切,最后代入計算可得;【詳解】解:因為,所以,所以故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)S=(0<<θ);(2)當α=時,S取得最大值為2﹣【解析】(1)由題意可求得∠ADO,△COD為等腰三角形,在△OAD中利用正弦定理求出AD,從而可用表示矩形ABCD的面積S;(2)由(1)可得,然后由的范圍結合正弦函數(shù)的性質可求出其最大值【詳解】解:(1)由題意可得AD∥OE∥CB,∴∠POE=∠PDA=θ,∴∠ODC==∠DCO,∠BOA=2θ﹣2,△COD為等腰三角形故AB=2sin(θ﹣),再由∠ADO==π﹣θ,△OAD中,利用正弦定理可得,化簡可得AD=故矩形ABCD的面積S=f()=AB?AD=(0<<θ)(2)θ=,由(1)可得S=f()===再由0<<可得<2+<,故當2+=,即當=時,S=f()取得最大值為2﹣18、(1)2;(2)詳見解析.【解析】(1)易知函數(shù)和在上遞增,從而在上遞增,根據(jù)在上的最大值為求解.(2)根據(jù)為的零點,得到,由零點存在定理知,然后利用指數(shù)和對數(shù)互化,將問題轉化為,利用基本不等式證明.【詳解】(1)因為函數(shù)和在上遞增,所以在上遞增,又因為在上的最大值為,所以,解得;(2)因為為的零點,所以,即,又當時,,當時,,所以,因為,等價于,等價于,等價于,而,令,所以,所以成立,所以.【點睛】關鍵點點睛:本題關鍵是由指數(shù)和對數(shù)的互化結合,將問題轉化為證成19、(1);(2)【解析】(1)由數(shù)量積公式,得夾角余弦值為;(2),所以。試題解析:(1)∵向量,∴.∴向量與的夾角的余弦值為.(2)∵向量與互相垂直,∴.又.∴.點睛:本題考查數(shù)量積的應用。數(shù)量積公式,學生要熟練掌握數(shù)量積公式的應用,能夠轉化到求夾角公式。兩向量垂直,則數(shù)量積為零。本題為基礎題型,考查公式的直接應用。20、(1);(2).【解析】(1)由題意,正方體的幾何結構特征,結合棱錐和正方體的體積公式,即可求解;(2)由(1),結合,即可求解.【詳解】(1)由題意,正方體的棱長為,則正方體的體積為,根據(jù)三棱錐的體積公式,可得,所以剩余部分的體積.(2)由(1)知,設三棱錐的高為,則,故,解得.【點睛】求空間幾何體的表面積與體積的求法:(1)公式法:對于規(guī)則的幾何體的表面積和體積,可直接利用公式進行求解;(2)割補法:把不規(guī)則的圖形分割成規(guī)則的圖形,然后進行體

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論