版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆河北省遵化市堡子店中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.圓與圓的位置關(guān)系為()A.內(nèi)切 B.外切C.相交 D.相離2.若空間中n個(gè)不同的點(diǎn)兩兩距離都相等,則正整數(shù)n的取值A(chǔ).至多等于3 B.至多等于4C.等于5 D.大于53.函數(shù)的導(dǎo)函數(shù)為,若已知圖象如圖,則下列說(shuō)法正確的是()A.存在極大值點(diǎn) B.在單調(diào)遞增C.一定有最小值 D.不等式一定有解4.已知點(diǎn)為雙曲線的左頂點(diǎn),點(diǎn)和點(diǎn)在雙曲線的右分支上,是等邊三角形,則的面積是A. B.C. D.5.在正四面體中,棱長(zhǎng)為2,且E是棱AB中點(diǎn),則的值為A. B.1C. D.6.直線與圓的位置關(guān)系是()A.相切 B.相交C.相離 D.不確定7.設(shè)村莊外圍所在曲線的方程可用表示,村外一小路所在直線方程可用表示,則從村莊外圍到小路的最短距離為()A. B.C. D.8.已知直線,兩個(gè)不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則9.從1,2,3,4,5中任取2個(gè)不同的數(shù),兩數(shù)和為偶數(shù)的概率為()A. B.C. D.10.若實(shí)數(shù)x,y滿足不等式組,則的最小值為()A. B.0C. D.211.與的等差中項(xiàng)是()A. B.C. D.12.已知點(diǎn)在拋物線:上,則的焦點(diǎn)到其準(zhǔn)線的距離為()A. B.C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.過(guò)橢圓上一點(diǎn)作軸的垂線,垂足為,則線段中點(diǎn)的軌跡方程為_(kāi)__________.14.已知雙曲線,的左、右焦點(diǎn)分別為、,且的焦點(diǎn)到漸近線的距離為1,直線與交于,兩點(diǎn),為弦的中點(diǎn),若為坐標(biāo)原點(diǎn))的斜率為,,則下列結(jié)論正確的是____________①;②的離心率為;③若,則的面積為2;④若的面積為,則為鈍角三角形15.若兩平行直線3x-2y-1=0,6x+ay+c=0之間的距離為,則的值為_(kāi)_______16.已知從某班學(xué)生中任選兩人參加農(nóng)場(chǎng)勞動(dòng),選中兩人都是男生的概率是,選中兩人都是女生的概率是,則選中兩人中恰有一人是女生的概率為_(kāi)_____三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的焦距為,離心率為(1)求橢圓方程;(2)設(shè)過(guò)橢圓頂點(diǎn),斜率為的直線交橢圓于另一點(diǎn),交軸于點(diǎn),且,,成等比數(shù)列,求的值18.(12分)蒙古包是蒙古族牧民居住的一種房子,建造和搬遷都很方便,適于游牧生活.其結(jié)構(gòu)如圖所示,上部分是側(cè)棱長(zhǎng)為3的正六棱錐,下部分是高為1的正六棱柱,分別為正六棱柱上底面與下底面的中心.(1)若長(zhǎng)為,把蒙古包的體積表示為的函數(shù);(2)求蒙古包體積的最大值.19.(12分)(1)已知雙曲線的離心率為2,求E的漸近線方程;(2)已知F是拋物線的焦點(diǎn),是C上一點(diǎn),且,求C的方程.20.(12分)已知點(diǎn)及圓,點(diǎn)P是圓B上任意一點(diǎn),線段的垂直平分線l交半徑于點(diǎn)T,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),記點(diǎn)T的軌跡為曲線E(1)求曲線E的方程;(2)設(shè)存在斜率不為零且平行的兩條直線,,它們與曲線E分別交于點(diǎn)C、D、M、N,且四邊形是菱形,求該菱形周長(zhǎng)的最大值21.(12分)如圖,多面體中,平面平面,,四邊形為平行四邊形.(1)證明:;(2)若,求二面角的余弦值.22.(10分)已知點(diǎn)P到點(diǎn)的距離比它到直線的距離小1.(1)求點(diǎn)P的軌跡方程;(2)點(diǎn)M,N在點(diǎn)P的軌跡上且位于x軸的兩側(cè),(其中O為坐標(biāo)原點(diǎn)),求面積的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】求出兩圓的圓心距與半徑之和、半徑之差比較大小即可得出正確答案.【詳解】由可得圓心為,半徑,由可得圓心為,半徑,所以圓心距為,所以兩圓相外切,故選:B.2、B【解析】先考慮平面上的情況:只有三個(gè)點(diǎn)的情況成立;再考慮空間里,只有四個(gè)點(diǎn)的情況成立,注意運(yùn)用外接球和三角形三邊的關(guān)系,即可判斷解:考慮平面上,3個(gè)點(diǎn)兩兩距離相等,構(gòu)成等邊三角形,成立;4個(gè)點(diǎn)兩兩距離相等,由三角形的兩邊之和大于第三邊,則不成立;n大于4,也不成立;空間中,4個(gè)點(diǎn)兩兩距離相等,構(gòu)成一個(gè)正四面體,成立;若n>4,由于任三點(diǎn)不共線,當(dāng)n=5時(shí),考慮四個(gè)點(diǎn)構(gòu)成的正四面體,第五個(gè)點(diǎn),與它們距離相等,必為正四面體的外接球的球心,由三角形的兩邊之和大于三邊,故不成立;同理n>5,不成立故選B點(diǎn)評(píng):本題考查空間幾何體的特征,主要考查空間兩點(diǎn)的距離相等的情況,注意結(jié)合外接球和三角形的兩邊與第三邊的關(guān)系,屬于中檔題和易錯(cuò)題3、C【解析】根據(jù)圖象可得的符號(hào),從而可得的單調(diào)區(qū)間,再對(duì)選項(xiàng)進(jìn)行逐一分析判斷正誤得出答案.【詳解】由所給的圖象,可得當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,可得在遞減,遞增;在遞減,在遞增,B錯(cuò)誤,且知,所以存在極小值和,無(wú)極大值,A錯(cuò)誤,同時(shí)無(wú)論是否存在,可得出一定有最小值,但是最小值不一定為負(fù)數(shù),故C正確,D錯(cuò)誤.故選:C.4、C【解析】設(shè)點(diǎn)在軸上方,由是等邊三角形得直線斜率.又直線過(guò)點(diǎn),故方程為.代入雙曲線方程,得點(diǎn)的坐標(biāo)為.同理可得,點(diǎn)的坐標(biāo)為.故的面積為,選C.5、A【解析】根據(jù)題意,由正四面體的性質(zhì)可得:,可得,由E是棱中點(diǎn),可得,代入,利用數(shù)量積運(yùn)算性質(zhì)即可得出.【詳解】如圖所示由正四面體的性質(zhì)可得:可得:是棱中點(diǎn)故選:【點(diǎn)睛】本題考查空間向量的線性運(yùn)算,考查立體幾何中的垂直關(guān)系,考查轉(zhuǎn)化與化歸思想,屬于中等題型.6、B【解析】直線恒過(guò)定點(diǎn),而此點(diǎn)在圓的內(nèi)部,故可得直線與圓的位置關(guān)系.【詳解】直線恒過(guò)定點(diǎn),而,故點(diǎn)在圓的內(nèi)部,故直線與圓的位置關(guān)系為相交,故選:B.7、B【解析】求出圓心到直線距離,減去半徑即為答案.【詳解】圓心到直線的距離,則從村莊外圍到小路的最短距離為故選:B8、A【解析】根據(jù)線面、面面位置關(guān)系有關(guān)知識(shí)對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】對(duì)于A選項(xiàng),根據(jù)面面垂直的判定定理可知,A選項(xiàng)正確,對(duì)于B選項(xiàng),當(dāng),時(shí),和可能相交,B選項(xiàng)錯(cuò)誤,對(duì)于C選項(xiàng),當(dāng),時(shí),可能含于,C選項(xiàng)錯(cuò)誤,對(duì)于D選項(xiàng),當(dāng),時(shí),可能含于,D選項(xiàng)錯(cuò)誤.故選:A9、B【解析】利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】從中任取個(gè)不同的數(shù)的方法有,共種,其中和為偶數(shù)的有共種,所以所求的概率為.故選:B【點(diǎn)睛】本小題主要考查古典概型概率計(jì)算,屬于基礎(chǔ)題.10、A【解析】畫出可行域,令,則,結(jié)合圖形求出最小值,即可得解;【詳解】解:畫出不等式組,表示的平面區(qū)域如圖陰影部分所示,由,解得,即,令,則.結(jié)合圖形可知當(dāng)過(guò)點(diǎn)時(shí),取得最小值,且,即故選:A11、A【解析】代入等差中項(xiàng)公式即可解決.【詳解】與的等差中項(xiàng)是故選:A12、B【解析】由點(diǎn)在拋物線上,求得參數(shù),焦點(diǎn)到其準(zhǔn)線的距離即為.【詳解】由點(diǎn)在拋物線上,易知,,故焦點(diǎn)到其準(zhǔn)線的距離為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】相關(guān)點(diǎn)法求解軌跡方程.【詳解】設(shè),則,則,即,因?yàn)椋肟傻?,即的軌跡方程為.故答案為:14、②④【解析】由已知可得,可求,,從而判斷①②,求出△的面積可判斷③,設(shè),,利用面積求出點(diǎn)的坐標(biāo),再求邊長(zhǎng),求出可判斷④【詳解】解:設(shè),,,,可得,,兩式相減可得,由題意可得,且,,,,,,故②正確;的焦點(diǎn)到漸近線的距離為1,設(shè)到漸近線的距離為,則,即,,故①錯(cuò)誤,,若,不妨設(shè)在右支上,,又,,則的面積為,故③不正確;設(shè),,,,將代入雙曲線,得,,根據(jù)雙曲線的對(duì)稱性,不妨取點(diǎn)的坐標(biāo)為,,,,,為鈍角,為鈍角三角形.故④正確故答案為:②④15、±1【解析】由題意得=≠,∴a=-4且c≠-2,則6x+ay+c=0可化為3x-2y+=0,由兩平行線間的距離公式,得=,解得c=2或c=-6,∴=±116、【解析】記“選中兩人都是男生”為事件,“選中兩人都是女生”為事件,“選中兩人中恰有一人是女生”為事件,根據(jù)為互斥事件,與為對(duì)立事件,從而可求出答案.【詳解】記“選中兩人都是男生”為事件,“選中兩人都是女生”為事件,“選中兩人中恰有一人是女生”為事件,易知為互斥事件,與為對(duì)立事件,又,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)由焦距為,離心率為結(jié)合性質(zhì),列出關(guān)于的方程組,求出從而求出橢圓方程;(2)設(shè)出直線方程,代入橢圓方程,求出點(diǎn)D、E的坐標(biāo),然后利用|BD|,|BE|,|DE|成等比數(shù)列,即可求解【詳解】(1)由已知,,解得,所以橢圓的方程為(2)由(1)得過(guò)點(diǎn)的直線為,由,得,所以,所以,依題意,因?yàn)?,,成等比?shù)列,所以,所以,即,當(dāng)時(shí),,無(wú)解,當(dāng)時(shí),,解得,所以,解得,所以,當(dāng),,成等比數(shù)列時(shí),【點(diǎn)睛】方法點(diǎn)睛(1)求橢圓方程的常用方法:①待定系數(shù)法;②定義法;③相關(guān)點(diǎn)法(2)直線與圓錐曲線的綜合問(wèn)題,常將直線方程代入圓錐曲線方程,從而得到關(guān)于(或)的一元二次方程,設(shè)出交點(diǎn)坐標(biāo)),利用韋達(dá)定理得出坐標(biāo)的關(guān)系,同時(shí)注意判別式大于零求出參數(shù)的范圍(或者得到關(guān)于參數(shù)的不等關(guān)系),然后將所求轉(zhuǎn)化到參數(shù)上來(lái)再求解.如本題及,聯(lián)立即可求解.注意圓錐曲線問(wèn)題中,常參數(shù)多、字母多、運(yùn)算繁瑣,應(yīng)注意設(shè)而不求的思想、整體思想的應(yīng)用.屬于中檔題.18、(1),其中.(2).【解析】(1)利用柱體和椎體體積公式求得的函數(shù)表達(dá)式.(2)利用導(dǎo)數(shù)求得體積的最大值.【小問(wèn)1詳解】正六邊形的邊長(zhǎng)(0),底面積,于是,其中.【小問(wèn)2詳解】,,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,所以當(dāng)時(shí),.綜上,當(dāng)時(shí),蒙古包體積最大,且最大體積為.19、(1);(2).【解析】(1)由可知,即可求出,故可得漸近線方程;(2)利用點(diǎn)在拋物線上及其拋物線的定義列方程求解即可.【詳解】(1)∵E的離心率,∴,即,解得,故E的漸近線方程為.(2)∵是C上一點(diǎn),∴①,由拋物線的定義可知②,兩式聯(lián)立可得,解得則C的方程為.20、(1)(2)【解析】(1)根據(jù)橢圓的定義和性質(zhì),建立方程求出,即可(2)設(shè)的方程為,,,,,設(shè)的方程為,,,,,分別聯(lián)立直線方程和橢圓方程,運(yùn)用韋達(dá)定理和判別式大于0,以及弦長(zhǎng)公式,求得,,運(yùn)用菱形和橢圓的對(duì)稱性可得,關(guān)于原點(diǎn)對(duì)稱,結(jié)合菱形的對(duì)角線垂直和向量數(shù)量積為0,可得,設(shè)菱形的周長(zhǎng)為,運(yùn)用基本不等式,計(jì)算可得所求最大值【小問(wèn)1詳解】點(diǎn)在線段的垂直平分線上,,又,曲線是以坐標(biāo)原點(diǎn)為中心,和為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓設(shè)曲線的方程為,,,曲線的方程為【小問(wèn)2詳解】設(shè)的方程為,,,,,設(shè)的方程為,,,,,聯(lián)立可得,由可得,化簡(jiǎn)可得,①,,,同理可得,因?yàn)樗倪呅螢榱庑危?,所以,又因?yàn)?,所以,所以,關(guān)于原點(diǎn)對(duì)稱,又橢圓關(guān)于原點(diǎn)對(duì)稱,所以,關(guān)于原點(diǎn)對(duì)稱,,也關(guān)于原點(diǎn)對(duì)稱,所以且,所以,,,,因?yàn)樗倪呅螢榱庑?,可得,即,即,即,可得,化?jiǎn)可得,設(shè)菱形的周長(zhǎng)為,則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,此時(shí),滿足①,所以菱形的周長(zhǎng)的最大值為【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:在處理此類直線與橢圓相交問(wèn)題中,一般先設(shè)出直線方程,聯(lián)立方程,利用韋達(dá)定理得出,,再具體問(wèn)題具體分析,一般涉及弦長(zhǎng)計(jì)算問(wèn)題,運(yùn)算比較繁瑣,需要較強(qiáng)的運(yùn)算能力,屬于難題。21、(1)證明見(jiàn)解析(2)【解析】(1)先通過(guò)平面平面得到,再結(jié)合,可得平面,進(jìn)而可得結(jié)論;(2)取的中點(diǎn),的中點(diǎn),連接,,以點(diǎn)為坐標(biāo)原點(diǎn),分別以,,為軸,軸,軸建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量以及平面的一個(gè)法向量,求這兩個(gè)法向量的夾角即可得結(jié)果.【詳解】解:(1)因?yàn)槠矫嫫矫?,交線為,又,所以平面,,又,,則平面,平面,所以,;(2)取的中點(diǎn),的中點(diǎn),連接,,則平面,平面;以點(diǎn)坐標(biāo)原點(diǎn),分別以,,為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,已知,則,,,,,,則,,設(shè)平面的一個(gè)法向量,由得令,則,,即;平面的一個(gè)法向量為;.所以二面角的余弦值為.【點(diǎn)睛】本題考查線線垂直的證明以及空間向量發(fā)求面面角,考查學(xué)生計(jì)算能力以及空間想象能力,是中檔題.22、(1);(2).【解析】(1)根據(jù)給定條件可得點(diǎn)P到點(diǎn)的距離等于它到直線的距離,再
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海市社團(tuán)財(cái)務(wù)制度
- 房產(chǎn)中介財(cái)務(wù)制度范本
- 農(nóng)業(yè)合作社退股財(cái)務(wù)制度
- 會(huì)計(jì)如何制定財(cái)務(wù)制度
- 中梁財(cái)務(wù)制度
- 人力財(cái)務(wù)制度
- 冰雪運(yùn)動(dòng)制度
- 內(nèi)部審計(jì)工作底稿的三級(jí)復(fù)核制度
- 公開(kāi)征集意見(jiàn)制度
- 梳理現(xiàn)有合規(guī)管理制度(3篇)
- 2026貴州省省、市兩級(jí)機(jī)關(guān)遴選公務(wù)員357人考試備考題庫(kù)及答案解析
- 兒童心律失常診療指南(2025年版)
- 北京通州產(chǎn)業(yè)服務(wù)有限公司招聘?jìng)淇碱}庫(kù)必考題
- (正式版)DBJ33∕T 1307-2023 《 微型鋼管樁加固技術(shù)規(guī)程》
- 2026年基金從業(yè)資格證考試題庫(kù)500道含答案(完整版)
- 2025年寵物疫苗行業(yè)競(jìng)爭(zhēng)格局與研發(fā)進(jìn)展報(bào)告
- 2025年中國(guó)礦產(chǎn)資源集團(tuán)所屬單位招聘筆試參考題庫(kù)附帶答案詳解(3卷)
- 氣體滅火系統(tǒng)維護(hù)與保養(yǎng)方案
- 電梯檢驗(yàn)安全導(dǎo)則
- 糖代謝紊亂生物化學(xué)檢驗(yàn)
- 科技基礎(chǔ)性工作專項(xiàng)項(xiàng)目科學(xué)數(shù)據(jù)匯交方案編制
評(píng)論
0/150
提交評(píng)論