版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省濟南市2026屆高一數(shù)學(xué)第一學(xué)期期末經(jīng)典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.以下四組數(shù)中大小比較正確的是()A. B.C. D.2.“,”的否定是()A., B.,C., D.,3.已知函數(shù)(,且)在上單調(diào)遞減,且關(guān)于x的方程恰有兩個不相等的實數(shù)解,則的取值范圍是A. B.[,]C.[,]{} D.[,){}4.“”是“關(guān)于的方程有實數(shù)根”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.“ω=2”是“π為函數(shù)的最小正周期”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知函數(shù),若關(guān)于x的方程恰有兩個不同的實數(shù)解,則實數(shù)m的取值范圍是()A. B.C. D.7.設(shè)集合,則()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)8.如圖,四棱錐的底面為正方形,底面,則下列結(jié)論中不正確的是A.B.平面C.平面平面D.與所成的角等于與所成的角9.設(shè)函數(shù)則A.1 B.4C.5 D.910.設(shè)函數(shù),A3 B.6C.9 D.12二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)f(x)=sinx-2cosx+的一個零點是,則tan=_________.12.已知函數(shù),現(xiàn)有如下幾個命題:①該函數(shù)為偶函數(shù);
②是該函數(shù)的一個單調(diào)遞增區(qū)間;③該函數(shù)的最小正周期為;④該函數(shù)的圖像關(guān)于點對稱;⑤該函數(shù)值域為.其中正確命題的編號為______13.若函數(shù)與函數(shù)的最小正周期相同,則實數(shù)______14.若函數(shù)在區(qū)間[2,3]上的最大值比最小值大,則__________.15.若函數(shù)是定義在上的奇函數(shù),且滿足,當(dāng)時,,則__________.16.已知扇形的弧長為6,圓心角弧度數(shù)為2,則其面積為______________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知的部分圖象如圖.(1)求函數(shù)的解析式;(2)求函數(shù)在上的單調(diào)增區(qū)間.18.已知函數(shù),不等式解集為,設(shè)(1)若存在,使不等式成立,求實數(shù)的取值范圍;(2)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍19.已知,,,.當(dāng)k為何值時:(1);(2).20.如圖,點,,在函數(shù)的圖象上(1)求函數(shù)的解析式;(2)若函數(shù)圖象上的兩點,滿足,,求四邊形OMQN面積的最大值21.已知函數(shù)是定義在上的奇函數(shù),且時,.(1)求函數(shù)的解析式;(2)若任意恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】結(jié)合指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)性質(zhì)即可求解詳解】對A,,故,錯誤;對B,在第一象限為增函數(shù),故,錯誤;對C,為增函數(shù),故,正確;對D,,,故,錯誤;故選:C【點睛】本題考查根據(jù)指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)性質(zhì)比較大小,屬于基礎(chǔ)題2、C【解析】利用含有一個量詞的命題的否定的定義求解即可【詳解】“,”的否定是“,,”故選:C3、C【解析】由在上單調(diào)遞減可知,由方程恰好有兩個不相等的實數(shù)解,可知,,又時,拋物線與直線相切,也符合題意,∴實數(shù)的取值范圍是,故選C.【考點】函數(shù)性質(zhì)綜合應(yīng)用【名師點睛】已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路:(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解4、A【解析】根據(jù)給定條件利用充分條件、必要條件的定義直接判斷作答.【詳解】當(dāng)時,方程的實數(shù)根為,當(dāng)時,方程有實數(shù)根,則,解得,則有且,因此,關(guān)于的方程有實數(shù)根等價于,所以“”是“關(guān)于的方程有實數(shù)根”的充分而不必要條件.故選:A5、A【解析】直接利用正弦型函數(shù)的性質(zhì)的應(yīng)用,充分條件和必要條件的應(yīng)用判斷A、B、C、D的結(jié)論【詳解】解:當(dāng)“ω=2”時,“函數(shù)f(x)=sin(2x﹣)的最小正周期為π”當(dāng)函數(shù)f(x)=sin(ωx﹣)的最小正周期為π”,故ω=±2,故“ω=2”是“π為函數(shù)的最小正周期”的充分不必要條件;故選:A6、D【解析】根據(jù)題意,函數(shù)與圖像有兩個交點,進而作出函數(shù)圖像,數(shù)形結(jié)合求解即可.【詳解】解:因為關(guān)于x的方程恰有兩個不同的實數(shù)解,所以函數(shù)與圖像有兩個交點,作出函數(shù)圖像,如圖,所以時,函數(shù)與圖像有兩個交點,所以實數(shù)m的取值范圍是故選:D7、C【解析】由題意分別計算出集合的補集和集合,然后計算出結(jié)果.【詳解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故選:C8、D【解析】結(jié)合直線與平面垂直判定和性質(zhì),結(jié)合直線與平面平行的判定,即可【詳解】A選項,可知可知,故,正確;B選項,AB平行CD,故正確;C選項,,故平面平面,正確;D選項,AB與SC所成的角為,而DC與SA所成的角為,故錯誤,故選D【點睛】考查了直線與平面垂直的判定和性質(zhì),考查了直線與平面平行的判定,考查了異面直線所成角,難度中等9、C【解析】根據(jù)題意,由函數(shù)的解析式求出與的值,相加即可得答案【詳解】根據(jù)題意,函數(shù),則,又由,則,則;故選C【點睛】本題考查對數(shù)的運算,及函數(shù)求值問題,其中解答中熟記對數(shù)的運算,以及合理利用分段函數(shù)的解析式求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題10、C【解析】.故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、##-0.5【解析】應(yīng)用輔助角公式有且,由正弦型函數(shù)的性質(zhì)可得,,再應(yīng)用誘導(dǎo)公式求.【詳解】由題設(shè),,,令,可得,即,,所以,,則.故答案為:12、②③【解析】由于為非奇非偶函數(shù),①錯誤.,此時,其在上為增函數(shù),②正確.由于,所以函數(shù)最小正周期為,③正確.由于,故④正確.當(dāng)時,,故⑤錯誤.綜上所述,正確的編號為②③.13、【解析】求出兩個函數(shù)的周期,利用周期相等,推出a的值【詳解】:函數(shù)的周期是;函數(shù)的最小正周期是:;因為周期相同,所以,解得故答案為【點睛】本題是基礎(chǔ)題,考查三角函數(shù)的周期的求法,考查計算能力14、【解析】函數(shù)在上單調(diào)遞增,∴解得:故答案為15、##【解析】由,可得函數(shù)是以為一個周期的周期函數(shù),再根據(jù)函數(shù)的周期性和奇偶性將所求轉(zhuǎn)化為已知區(qū)間即可得解.【詳解】解:因為,所以函數(shù)是以為一個周期的周期函數(shù),所以,又因為函數(shù)是定義在上的奇函數(shù),所以,所以.故答案為:.16、9【解析】根據(jù)扇形的弧長是6,圓心角為2,先求得半徑,再代入公式求解.【詳解】因為扇形的弧長是6,圓心角為2,所以,所以扇形的面積為,故答案為:9.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)和.【解析】(1)由圖知:且可求,再由,結(jié)合已知求,寫出解析式即可.(2)由正弦函數(shù)的單調(diào)性,知上遞增,再結(jié)合給定區(qū)間,討論值確定其增區(qū)間.【詳解】(1)由圖知:且,∴.又,即,而,∴.綜上,.(2)∵,∴.當(dāng)時,;當(dāng)時,,又,∴函數(shù)在上的單調(diào)增區(qū)間為和.18、(1);(2)【解析】(1)由不等式的解集為可知是方程的兩個根,即可求出,根據(jù)的單調(diào)性求出其在的最大值,即可得出m的范圍;(2)方程可化為,令,則有兩個不同的實數(shù)解,,根據(jù)函數(shù)性質(zhì)可列出不等式求解.【詳解】(1)∵不等式的解集為∴,是方程的兩個根∴,解得.∴則∴存在,使不等式成立,等價于在上有解,而在時單調(diào)遞增,∴∴的取值范圍為(2)原方程可化為令,則,則有兩個不同的實數(shù)解,,其中,,或,記,則①,解得或②,不等式組②無實數(shù)解∴實數(shù)的取值范圍為【點睛】本題考查一元二次不等式的解集與方程的根的關(guān)系,考查函數(shù)的單調(diào)性,考查利用函數(shù)性質(zhì)解決方程解的情況,屬于較難題.19、(1)或2;(2)【解析】(1)根據(jù)向量共線坐標公式列方程即可求解;(2)根據(jù)向量垂直坐標公式列方程即可求解【詳解】(1)若,有,整理為解得或2;(2)若,有,整理為解得:20、(1)(2)【解析】(1)由圖可求出,從而求得,由圖可知函數(shù)處取得最小值,從而可求出的值,再將點的坐標代入函數(shù)中可求出,進而可求出函數(shù)的解析式,(2)由題意求得所以,,而四邊形OMQN的面積為S,則,代入化簡利用三角函數(shù)的性質(zhì)可求得結(jié)果【小問1詳解】由圖可知的周期T滿足,得又因為,所以,解得又在處取得最小值,即,得,所以,,解得,因為,所以.由,得,所以綜上,【小問2詳解】當(dāng)時,,所以.由知此時記四邊形OMQN的面積為S,則又因為,所以,所以當(dāng),即時,取得最大值所以四邊形OMQN面積的最大值是21、(1);(2).【解析】(1)由奇函數(shù)的性質(zhì)可得出,設(shè),由奇函數(shù)的性質(zhì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年石家莊人民醫(yī)學(xué)高等專科學(xué)校輔導(dǎo)員考試筆試題庫附答案
- 2024年西南林業(yè)大學(xué)輔導(dǎo)員考試筆試真題匯編附答案
- 2024年鄭州體育職業(yè)學(xué)院輔導(dǎo)員招聘備考題庫附答案
- 2024年黑龍江能源職業(yè)學(xué)院輔導(dǎo)員考試參考題庫附答案
- 2025下半年四川巴中市南江縣考核招聘高中緊缺學(xué)科教師44人參考題庫附答案
- 2025南京郵電大學(xué)招聘勞務(wù)派遣工作人員2人(第二批)備考題庫附答案
- 2025西藏林芝市生態(tài)環(huán)境局工布江達縣分局招聘1人備考題庫新版
- 2026上海世外教育附屬崇明區(qū)匯萌幼兒園系統(tǒng)內(nèi)公開招聘教師參考題庫完美版
- 2024年石家莊城市經(jīng)濟職業(yè)學(xué)院輔導(dǎo)員考試參考題庫附答案
- 2024年荊門職業(yè)學(xué)院輔導(dǎo)員考試筆試真題匯編附答案
- 云南師大附中2026屆高三1月高考適應(yīng)性月考卷英語(六)含答案
- 2026湖北隨州農(nóng)商銀行科技研發(fā)中心第二批人員招聘9人筆試備考試題及答案解析
- 騎行美食活動方案策劃(3篇)
- 2026年上海市松江區(qū)初三語文一模試卷(暫無答案)
- 石化企業(yè)環(huán)保培訓(xùn)課件
- 2026年呂梁職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試備考試題帶答案解析
- 清華大學(xué)教師教學(xué)檔案袋制度
- 數(shù)字信號處理課程實驗教學(xué)大綱
- 2023年黑龍江省哈爾濱市中考化學(xué)試卷及解析
- 深基坑施工專項方案
- 禾川x3系列伺服說明書
評論
0/150
提交評論