濟寧市2026屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第1頁
濟寧市2026屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第2頁
濟寧市2026屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第3頁
濟寧市2026屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第4頁
濟寧市2026屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

濟寧市2026屆高二數(shù)學第一學期期末聯(lián)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.42.圓的圓心到直線的距離為2,則()A. B.C. D.23.在下列函數(shù)中,求導錯誤的是()A., B.,C., D.,4.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點為M,設(shè)=,=,=,則=()A.++ B.+C.++ D.+5.《九章算術(shù)》是中國古代張蒼、耿壽昌所撰寫的一部數(shù)學專著,全書總結(jié)了戰(zhàn)國、秦、漢時期的數(shù)學成就,其中有如下問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何?”其意思為:“今有人分錢,各人所得錢數(shù)依次為等差數(shù)列,其中前人所得之和與后人所得之和相等,問各得多少錢?”,則第人得錢數(shù)為()A.錢 B.錢C.錢 D.錢6.設(shè)雙曲線的左、右頂點分別為、,左、右焦點分別為、,以為直徑的圓與雙曲線左支的一個交點為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.7.已知長方體中,,,則直線與所成角的余弦值是()A. B.C. D.8.已知,,,若,,共面,則λ等于()A. B.3C. D.99.已知,則點到平面的距離為()A. B.C. D.10.已知曲線,則“”是“C為雙曲線”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.瑞士數(shù)學家歐拉1765年在其所著的《三角形的幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點,,其歐拉線方程為,則頂點的坐標可以是()A. B.C. D.12.已知F為橢圓C:=1(a>b>0)右焦點,O為坐標原點,P為橢圓C上一點,若|OP|=|OF|,∠POF=120°,則橢圓C的離心率為()A. B.C.-1 D.-1二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線在點處的切線的斜率為,則______14.若橢圓的焦點在軸上,過點作圓的切線,切點分別為,,直線恰好經(jīng)過橢圓的上焦點和右頂點,則橢圓的方程是________________15.直線與圓相交于A,B兩點,則的最小值為__________.16.在數(shù)列中,,,則數(shù)列的前6項和為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和滿足,數(shù)列滿足(1)求,的通項公式;(2)若數(shù)列滿足,求的前項和18.(12分)已知公差不為的等差數(shù)列的首項,且、、成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),,是數(shù)列的前項和,求使成立的最大的正整數(shù).19.(12分)已知函數(shù)(1)若在上單調(diào)遞減,求實數(shù)a的取值范圍(2)若是方程的兩個不相等的實數(shù)根,證明:20.(12分)已知數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的通項公式及前項的和.21.(12分)已知圓(1)求圓心的坐標和圓的面積;(2)若直線與圓相交于兩點,求弦長22.(10分)已知甲組數(shù)據(jù)的莖葉圖如圖所示,其中數(shù)據(jù)的整數(shù)部分為莖,數(shù)據(jù)的小數(shù)部分(僅一位小數(shù))為葉,例如第一個數(shù)據(jù)為5.3(1)求:甲組數(shù)據(jù)的平均值、方差、中位數(shù);(2)乙組數(shù)據(jù)為,且甲、乙兩組數(shù)據(jù)合并后的30個數(shù)據(jù)的平均值為,方差為,求:乙組數(shù)據(jù)的平均值和方差,寫出必要的計算步驟.參考公式:平均值,方差

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由雙曲線的漸近線方程,可得,再由的關(guān)系和離心率公式,計算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.2、B【解析】配方求出圓心坐標,再由點到直線距離公式計算【詳解】圓的標準方程是,圓心為,∴,解得故選:B.【點睛】本題考查圓的標準方程,考查點到直線距離公式,屬于基礎(chǔ)題3、B【解析】分別求得每個函數(shù)的導數(shù)即可判斷.詳解】;;;.故求導錯誤的是B.故選:B.4、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B5、A【解析】設(shè)第所得錢數(shù)為錢,設(shè)數(shù)列、、、、的公差為,根據(jù)已知條件可得出關(guān)于、的值,即可求得的值.【詳解】設(shè)第所得錢數(shù)為錢,則數(shù)列、、、、為等差數(shù)列,設(shè)數(shù)列、、、、公差為,則,解得,故.故選:A.6、C【解析】據(jù)三角形中位線可得;再由雙曲線的定義求出,進而求出的面積【詳解】雙曲線的方程為:,,設(shè)以為直徑的圓與直線相切與點,則,且,,∥.又為的中點,,又,,的面積為:.故選:C7、C【解析】建立空間直角坐標系,設(shè)直線與所成角為,由求解.【詳解】∵長方體中,,,∴分別以,,為,,軸建立如圖所示空間直角坐標系,,則,,,,所以,,設(shè)直線與所成角為,則,∴直線和夾角余弦值是.故選:C.8、C【解析】由,,共面,設(shè),列方程組能求出λ的值【詳解】∵,,共面,∴設(shè)(實數(shù)m、n),即,∴,解得故選:C9、A【解析】根據(jù)給定條件求出平面的法向量,再利用空間向量求出點到平面的距離.【詳解】依題意,,設(shè)平面的法向量,則,令,得,則點到平面的距離為,所以點到平面的距離為.故選:A10、A【解析】根據(jù)充分必要條件的定義,以及雙曲線的標準方程進行判斷可得選項【詳解】解:當時,表示雙曲線,當表示雙曲線時,則,所以“”是“C為雙曲線”的充分不必要條件.故選A11、C【解析】設(shè)出點C坐標,求出的重心并代入歐拉線方程,驗證并排除部分選項,余下選項再由外心、垂心驗證判斷作答.【詳解】設(shè)頂點的坐標為,則的重心坐標為,依題意,,整理得:,對于A,當時,,不滿足題意,排除A;對于D,當時,,不滿足題意,排除D;對于B,當時,,對于C,當時,,直線AB的斜率,線段AB中點,線段AB中垂線方程:,即,由解得:,于是得的外心,若點,則直線BC的斜率,線段BC中點,該點與點M確定直線斜率為,顯然,即點M不在線段BC的中垂線上,不滿足題意,排除B;若點,則直線BC的斜率,線段BC中點,線段BC中垂線方程為:,即,由解得,即點為的外心,并且在直線上,邊AB上的高所在直線:,即,邊BC上的高所在直線:,即,由解得:,則的垂心,此時有,即的垂心在直線上,選項C滿足題意.故選:C【點睛】結(jié)論點睛:的三頂點,則的重心為.12、D【解析】記橢圓的左焦點為,在中,通過余弦定理得出,,根據(jù)橢圓的定義可得,進而可得結(jié)果.【詳解】記橢圓的左焦點為,在中,可得,在中,可得,故,故,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】對求導,根據(jù)題設(shè)有且,即可得目標式的值.【詳解】由題設(shè),且定義域為,則,所以,整理得,又,所以,兩邊取對數(shù)有,得:,即.故答案為:.14、【解析】設(shè)過點的圓的切線為,分類討論求得直線分別與圓的切線,求得直線的方程,從而得到直線與軸、軸的交點坐標,得到橢圓的右焦點和上頂點,進而求得橢圓的方程.【詳解】設(shè)過點的圓的切線分別為,即,當直線與軸垂直時,不存在,直線方程為,恰好與圓相切于點;當直線與軸不垂直時,原點到直線的距離為,解得,此時直線的方程為,此時直線與圓相切于點,因此,直線的斜率為,直線的方程為,所以直線交軸交于點,交于軸于點,橢圓的右焦點為,上頂點為,所以,可得,所以橢圓的標準方程為.故答案為:.15、【解析】直線過定點,圓心,當時,取得最小值,再由勾股定理即可求解.【詳解】由,得,由,得直線過定點,且在圓的內(nèi)部,由圓可得圓心,半徑,當時,取得最小值,圓心與定點的距離為,則的最小值為.故答案為:.16、129【解析】依次寫出前6項,即可求得數(shù)列的前6項和.【詳解】數(shù)列中,,則,,,則數(shù)列的前6項和為故答案為:129三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)由求得的遞推關(guān)系,結(jié)合可得其為等比數(shù)列,從而得通項公式,代入計算得;(2)求出,由錯位相減法求和【詳解】(1)由可得,,即,易知,故..(2)由(1)可知,①,②,①-②得,.【點睛】方法點睛:本題主要考查等比數(shù)列的通項公式及錯位相減法求和.數(shù)列求和的常用方法:公式法、錯位相減法、裂項相消法、分組(并項)求和法,倒序相加法18、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件可得出關(guān)于實數(shù)的等式,結(jié)合可求得的值,由此可得出數(shù)列的通項公式;(2)利用裂項求和法求出,解不等式即可得出結(jié)果.【小問1詳解】解:設(shè)等差數(shù)列公差為,則,由題意可得,即,整理得,,解得,故.【小問2詳解】解:,所以,,由得,可得,所以,滿足成立的最大的正整數(shù)的值為.19、(1);(2)詳見解析【解析】(1)首先求函數(shù)的導數(shù),結(jié)合函數(shù)的導數(shù)與函數(shù)單調(diào)性的關(guān)系,參變分離后,轉(zhuǎn)化為求函數(shù)的最值,即可求得實數(shù)的取值范圍;(2)將方程的實數(shù)根代入方程,再變形得到,利用分析法,轉(zhuǎn)化為證明,通過換元,構(gòu)造函數(shù),轉(zhuǎn)化為利用導數(shù)證明,恒成立.【小問1詳解】,,在上單調(diào)遞減,在上恒成立,即,即在,設(shè),,,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,所以函數(shù)的最大值是,所以;【小問2詳解】若是方程兩個不相等的實數(shù)根,即又2個不同實數(shù)根,且,,得,即,所以,不妨設(shè),則,要證明,只需證明,即證明,即證明,令,,令函數(shù),所以,所以函數(shù)在上單調(diào)遞減,當時,,所以,,所以,即,即得【點睛】本題考查利用導數(shù)的單調(diào)性求參數(shù)的取值范圍,以及證明不等式,屬于難題,導數(shù)中的雙變量問題,往往采用分析法,轉(zhuǎn)化為函數(shù)與不等式的關(guān)系,通過構(gòu)造函數(shù),結(jié)合函數(shù)的導數(shù),即可證明.20、(1)證明見解析;(2),.【解析】(1)證明出,即可證得結(jié)論成立;(2)由(1)的結(jié)論并確定數(shù)列的首項和公比,可求得數(shù)列的通項公式,再利用分組求和法可求得.【小問1詳解】證明:因為數(shù)列滿足,,則,且,則,,,以此類推可知,對任意的,,所以,,故數(shù)列為等比數(shù)列.【小問2詳解】解:由(1)可知,數(shù)列是首項為,公比為的等比數(shù)列,則,所以,,因此,.21、(1)圓心,面積為;(2).【解析】(1)將圓化為標準方程,進而求出圓心、半徑和圓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論