版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆四川省井研中學高一上數(shù)學期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,其所對應的函數(shù)可能是()A B.C. D.2.已知,設函數(shù),的最大值為A,最小值為B,那么A+B的值為()A.4042 B.2021C.2020 D.20243.函數(shù)(為自然對數(shù)的底)的零點所在的區(qū)間為A. B.C. D.4.高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有“數(shù)學王子”的稱號,用其名字命名的“高斯函數(shù)”為:設,用表示不超過x的最大整數(shù),則稱為高斯函數(shù)例如:,,已知函數(shù),則函數(shù)的值域為()A. B.C.1, D.1,2,5.已知函數(shù)是定義在上的偶函數(shù),且在區(qū)間上單調(diào)遞增.若實數(shù)滿足,則的最大值是A.1 B.C. D.6.設,,,則,,的大小關(guān)系為()A. B.C. D.7.設函數(shù),點,,在的圖像上,且.對于,下列說法正確的是()①一定是鈍角三角形②可能是直角三角形③不可能是等腰三角形③可能是等腰三角形A①③ B.①④C.②③ D.②④8.已知平面向量,,且,則等于()A.(-2,-4) B.(-3,-6)C.(-5,-10) D.(-4,-8)9.與終邊相同的角的集合是A. B.C. D.10.△ABC的內(nèi)角、、的對邊分別為、、,若,,,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.第24屆冬季奧林匹克運動會(TheXXIVOlympicWinterGames),即2022年北京冬季奧運會,計劃于2022年2月4日星期五開幕,2月20日星期日閉幕.北京冬季奧運會設7個大項,15個分項,109個小項.某大學青年志愿者協(xié)會接到組委會志愿者服務邀請,計劃從大一至大三青年志愿者中選出24名志愿者,參與北京冬奧會高山滑雪比賽項目的服務工作.已知大一至大三的青年志愿者人數(shù)分別為50,40,30,則按分層抽樣的方法,在大一青年志愿者中應選派__________人.12.給出下列命題:①存在實數(shù),使;②函數(shù)是偶函數(shù);③若是第一象限角,且,則;④是函數(shù)的一條對稱軸方程以上命題是真命題的是_______(填寫序號)13.我國著名的數(shù)學家華羅庚先生曾說:數(shù)缺形時少直觀,形缺數(shù)時難人微;數(shù)形結(jié)合百般好,隔裂分家萬事休,在數(shù)學學習和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì).請寫出一個在上單調(diào)遞增且圖象關(guān)于y軸對稱的函數(shù):________________14.圓的半徑是6cm,則圓心角為30°的扇形面積是_________15.已知,,當時,關(guān)于的不等式恒成立,則的最小值是_________16.若正數(shù)x,y滿足,則的最小值是_________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.若函數(shù)在定義域內(nèi)存在實數(shù)使成立,則稱函數(shù)有“漂移點”.(1)函數(shù)是否有漂移點?請說明理由;(2)證明函數(shù)在上有漂移點;(3)若函數(shù)在上有漂移點,求實數(shù)的取值范圍.18.已知函數(shù),當時,取得最小值(1)求a的值;(2)若函數(shù)有4個零點,求t的取值范圍19.已知函數(shù).(1)判斷在區(qū)間上的單調(diào)性,并用定義證明;(2)判斷的奇偶性,并求在區(qū)間上的值域.20.如圖,在平面直角坐標系中,已知以為圓心的圓及其上一點.①設圓與軸相切,與圓外切,且圓心在直線上,求圓的標準方程②設點滿足存在圓上的兩點和,使得四邊形為平行四邊形,求實數(shù)的取值范圍21.已知線段的端點的坐標為,端點在圓上運動.(1)求線段中點的軌跡的方程;(2)若一光線從點射出,經(jīng)軸反射后,與軌跡相切,求反射光線所在的直線方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】代入特殊點的坐標即可判斷答案.【詳解】設函數(shù)為,由圖可知,,排除C,D,又,排除A.故選:B.2、D【解析】由已知得,令,則,由的單調(diào)性可求出最大值和最小值的和為,即可求解.【詳解】函數(shù)令,∴,又∵在,時單調(diào)遞減函數(shù);∴最大值和最小值的和為,函數(shù)的最大值為,最小值為;則;故選:3、B【解析】分析:先判斷函數(shù)的單調(diào)性,然后結(jié)合選項,利用零點的存在定理,即可求解.詳解:由題意,函數(shù)為單調(diào)遞減函數(shù),又因為,由函數(shù)的零點判斷可知,函數(shù)的零點在區(qū)間,故選B.點睛:本題主要考查了函數(shù)的零點的判定定理及應用,其中熟記函數(shù)的零點的存在定理是解答本題的關(guān)鍵,著重考查了推理與計算能力,屬于基礎題.4、C【解析】由分式函數(shù)值域的求法得:,又,所以,由高斯函數(shù)定義的理解得:函數(shù)的值域為,得解【詳解】解:因為,所以,又,所以,由高斯函數(shù)的定義可得:函數(shù)的值域為,故選C【點睛】本題考查了分式函數(shù)值域的求法及對新定義的理解,屬中檔題5、D【解析】根據(jù)題意,函數(shù)f(x)是定義在R上的偶函數(shù),則=,又由f(x)區(qū)間(﹣∞,0)上單調(diào)遞增,則f(x)在(0,+∞)上遞減,則f(32a﹣1)?f(32a﹣1)?32a﹣1<?32a﹣1,則有2a﹣1,解可得a,即的最大值是,故選:D.6、D【解析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,再結(jié)合0,1兩個中間量即可求得答案.【詳解】因為,,,所以.故選:D.7、A【解析】結(jié)合,得到,所以一定為鈍角三角形,可判定①正確,②錯誤;根據(jù)兩點間的距離公式和函數(shù)的變化率的不同,得到,可判定③正確,④不正確.【詳解】由題意,函數(shù)為單調(diào)遞增函數(shù),因為點,,在的圖像上,且,不妨設,可得,則,因為,可得,又由因為,,,,所以,所以所以,所以一定為鈍角三角形,所以①正確,②錯誤;由兩點間的距離公式,可得,根據(jù)指數(shù)函數(shù)和一次函數(shù)的變化率,可得點到的變化率小于點到點的變化率不相同,所以,所以不可能為等腰三角形,所以③正確,④不正確.故選:A.8、D【解析】由,求得,再利用向量的坐標運算求解.【詳解】解:因為,,且,所以m=-4,,所以=(-4,-8),故選:D9、D【解析】根據(jù)終邊相同的角定義的寫法,直接寫出與角α終邊相同的角,得到結(jié)果【詳解】根據(jù)角的終邊相同的定義的寫法,若α=,則與角α終邊相同的角可以表示為k?360°(k∈Z),即(k∈Z)故選D【點睛】本題考查與角α的終邊相同的角的集合的表示方法,屬于基礎題.10、C【解析】由已知利用余弦定理可求的值,利用等腰三角形的性質(zhì)可求的值.【詳解】解:∵,,,∴由余弦定理可得,求得:c=1.∴∴.故選:C.【點睛】本題主要考查了余弦定理在解三角形中應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、10【解析】根據(jù)分層抽樣原理求出抽取的人數(shù)【詳解】解:根據(jù)分層抽樣原理知,,所以在大一青年志愿者中應選派10人故答案為:1012、②④【解析】根據(jù)三角函數(shù)的性質(zhì),依次分析各選項即可得答案.【詳解】解:①因為,故不存在實數(shù),使得成立,錯誤;②函數(shù),由于是偶函數(shù),故是偶函數(shù),正確;③若,均為第一象限角,顯然,故錯誤;④當時,,由于是函數(shù)的一條對稱軸,故是函數(shù)的一條對稱軸方程,正確.故正確的命題是:②④故答案為:②④13、(答案不唯一)【解析】利用函數(shù)的單調(diào)性及奇偶性即得.【詳解】∵函數(shù)在上單調(diào)遞增且圖象關(guān)于y軸對稱,∴函數(shù)可為.故答案為:.14、3π【解析】根據(jù)扇形的面積公式即可計算.【詳解】,.故答案為:3π.15、4【解析】由題意可知,當時,有,所以,所以點睛:本題考查基本不等式的應用.本題中,關(guān)于的不等式恒成立,則當時,有,得到,所以.本題的關(guān)鍵是理解條件中的恒成立16、##【解析】由基本不等式結(jié)合得出最值.【詳解】(當且僅當時,等號成立),即最小值為.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)沒有,理由見解析;(2)證明見解析;(3).【解析】(1)根據(jù)給定定義列方程求解判斷作答.(2)根據(jù)給定定義構(gòu)造函數(shù),由零點存在性定理判斷函數(shù)的零點情況即可作答.(3)根據(jù)給定定義列方程,變形構(gòu)造函數(shù),利用函數(shù)有零點分類討論計算作答.【小問1詳解】假設函數(shù)有“漂移點”,則,此方程無實根,所以函數(shù)沒有漂移點.【小問2詳解】令,,則,有,即有,而函數(shù)在單調(diào)遞增,因此,在上有一個實根,所以函數(shù)在上有漂移點.小問3詳解】依題意,設在上的漂移點為,則,即,亦即,整理得:,由已知可得,令,,則在上有零點,當時,的圖象的對稱軸為,而,則,即,整理得,解得,則,當時,,0,則不成立,當時,,在上單調(diào)遞增,又,則恒大于0,因此,在上沒有零點.綜上得,.【點睛】思路點睛:涉及一元二次方程的實根分布問題,可借助二次函數(shù)的圖象及其性質(zhì),利用數(shù)形結(jié)合的方法解決問題.18、(1)4(2)【解析】(1)分類討論和兩種情況,由其單調(diào)性得出a的值;(2)令,結(jié)合一元二次方程根的分布得出t的取值范圍【小問1詳解】解:當時,,則,故沒有最小值當時,由,得,則在上單調(diào)遞減,在上單調(diào)遞增,故,即【小問2詳解】的圖象如圖所示令,則函數(shù)在上有2個零點,得解得,故t的取值范圍為19、(1)函數(shù)在區(qū)間上單調(diào)遞增,證明見解析(2)函數(shù)為奇函數(shù),在區(qū)間上的值域為【解析】(1)利用定義法證明函數(shù)單調(diào)性;(2)先得到定義域關(guān)于原點對稱,結(jié)合得到函數(shù)為奇函數(shù),利用第一問的單調(diào)性求出在區(qū)間上的值域.【小問1詳解】在區(qū)間上單調(diào)遞增,證明如下:,,且,有.因為,,且,所以,.于是,即.故在區(qū)間上單調(diào)遞增.【小問2詳解】的定義域為.因為,所以為奇函數(shù).由(1)得在區(qū)間上單調(diào)遞增,結(jié)合奇偶性可得在區(qū)間上單調(diào)遞增.又因為,,所以在區(qū)間上的值域為.20、①..②.【解析】①.由題意利用待定系數(shù)法可得圓的標準方程為②.由題意四邊形為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年河南建筑職業(yè)技術(shù)學院高職單招職業(yè)適應性測試參考題庫有答案解析
- 2026年曹妃甸職業(yè)技術(shù)學院單招綜合素質(zhì)筆試備考題庫帶答案解析
- 2026年合肥科技職業(yè)學院單招綜合素質(zhì)筆試備考題庫帶答案解析
- 土地轉(zhuǎn)租補充條款合同協(xié)議2025年
- 2026年黑龍江信息技術(shù)職業(yè)學院高職單招職業(yè)適應性測試備考試題有答案解析
- 2026年渤海理工職業(yè)學院高職單招職業(yè)適應性測試模擬試題有答案解析
- 2026年煙臺文化旅游職業(yè)學院單招綜合素質(zhì)筆試備考題庫附答案詳解
- 停車場管理服務合同協(xié)議(2025年)
- 碳匯林監(jiān)測協(xié)議2025年長期合作
- 2026年福建林業(yè)職業(yè)技術(shù)學院單招綜合素質(zhì)考試參考題庫帶答案解析
- 【高三上】廣東省華師聯(lián)盟2026屆高三12月質(zhì)量檢測語文試題含答案
- 2025年廣州市花都區(qū)花東鎮(zhèn)人民政府公開招聘執(zhí)法輔助工作人員備考題庫帶答案詳解
- 小學生用電安全知識課件
- 2026年收益分成協(xié)議
- 肝癌TACE治療課件
- 2022年-2024年青島衛(wèi)健委事業(yè)編中醫(yī)筆試真題
- JJG(交通) 070-2006 混凝土超聲檢測儀
- 合作銷售礦石協(xié)議書
- 2025上海初三各區(qū)一模、二模作文題、主題歸納及審題分析指導
- 七年級數(shù)學上冊 期中考試卷(滬科安徽版)
- 人工智能在體育訓練與競技分析中的應用
評論
0/150
提交評論