2026屆云南省彝良縣一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2026屆云南省彝良縣一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2026屆云南省彝良縣一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2026屆云南省彝良縣一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2026屆云南省彝良縣一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆云南省彝良縣一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直角坐標(biāo)系中,直線的傾斜角是A.30° B.60°C.120° D.150°2.已知正方體的棱長為1,且滿足,則的最小值是()A. B.C. D.3.《九章算數(shù)》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積為3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為()A.1升 B.升C.升 D.升4.在中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若,,,則的面積為()A. B.1C. D.25.甲、乙兩名同學(xué)同時(shí)從教室出發(fā)去體育館打球(路程相等),甲一半時(shí)間步行,一半時(shí)間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時(shí)到體育館 D.不確定誰先到體育館6.已知橢圓:的離心率為,則實(shí)數(shù)()A. B.C. D.7.雙曲線的漸近線方程為A. B.C. D.8.已知向量,.若,則()A. B.C. D.9.已知P是直線上的動(dòng)點(diǎn),PA,PB是圓的切線,A,B為切點(diǎn),C為圓心,那么四邊形PACB的面積的最小值是()A2 B.C.3 D.10.長方體中,,,,為側(cè)面內(nèi)(含邊界)的動(dòng)點(diǎn),且滿足,則四棱錐體積的最小值為()A. B.C. D.11.已知數(shù)列的通項(xiàng)公式為,按項(xiàng)的變化趨勢(shì),該數(shù)列是()A.遞增數(shù)列 B.遞減數(shù)列C.擺動(dòng)數(shù)列 D.常數(shù)列12.已知直線,若圓C的圓心在軸上,且圓C與直線都相切,求圓C的半徑()A. B.C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.求值______.14.如圖是一個(gè)邊長為4的正方形二維碼,為了測算圖中黑色部分的面積,在正方形區(qū)域內(nèi)隨機(jī)投擲1600個(gè)點(diǎn),其中落入白色部分的有700個(gè)點(diǎn),據(jù)此可估計(jì)黑色部分的面積為______________15.在空間直角坐標(biāo)系中,經(jīng)過且法向量的平面方程為,經(jīng)過且方向向量的直線方程為閱讀上面材料,并解決下列問題:給出平面的方程,經(jīng)過點(diǎn)的直線的方程為,則直線l與平面所成角的余弦值為___________.16.若恒成立,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓(1)求圓心的坐標(biāo)和圓的面積;(2)若直線與圓相交于兩點(diǎn),求弦長18.(12分)已知在等差數(shù)列中,,(1)求的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和19.(12分)已知橢圓的焦距為4,點(diǎn)在G上.(1)求橢圓G方程;(2)過橢圓G右焦點(diǎn)的直線l與橢圓G交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求直線l的方程.20.(12分)已知幾何體中,平面平面,是邊長為4的菱形,,是直角梯形,,,且(1)求證:;(2)求平面與平面所成角的余弦值21.(12分)已知直線,圓.(1)求證:直線l恒過定點(diǎn);(2)若直線l的傾斜角為,求直線l被圓C截得的弦長.22.(10分)已知數(shù)列的前項(xiàng)和為,,.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和;(3)若數(shù)列,,求前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)直線方程得到直線的斜率后可得直線的傾斜角.【詳解】設(shè)直線的傾斜角為,則,因,故,故選D.【點(diǎn)睛】直線的斜率與傾斜角的關(guān)系是:,當(dāng)時(shí),直線的斜率不存在,注意傾斜角的范圍.2、C【解析】由空間向量共面定理可得點(diǎn)四點(diǎn)共面,從而將求的最小值轉(zhuǎn)化為求點(diǎn)到平面的距離,再根據(jù)等體積法計(jì)算.【詳解】因?yàn)?,由空間向量的共面定理可知,點(diǎn)四點(diǎn)共面,即點(diǎn)在平面上,所以的最小值為點(diǎn)到平面的距離,由正方體棱長為,可得是邊長為的等邊三角形,則,,由等體積法得,,所以,所以的最小值為.故選:C【點(diǎn)睛】共面定理的應(yīng)用:設(shè)是不共面的四點(diǎn),則對(duì)空間任意一點(diǎn),都存在唯一的有序?qū)崝?shù)組使得,說明:若,則四點(diǎn)共面.3、B【解析】設(shè)出竹子自上而下各節(jié)的容積且為等差數(shù)列,根據(jù)上面4節(jié)的容積共3升,下面3節(jié)的容積共4升列出關(guān)于首項(xiàng)和公差的方程,聯(lián)立即可求出首項(xiàng)和公差,根據(jù)求出的首項(xiàng)和公差,利用等差數(shù)列的通項(xiàng)公式即可求出第5節(jié)的容積【詳解】解:設(shè)竹子自上而下各節(jié)的容積分別為:,,,,且為等差數(shù)列,根據(jù)題意得:,,即①,②,②①得:,解得,把代入①得:,則故選:B【點(diǎn)睛】本題考查學(xué)生掌握等差數(shù)列的性質(zhì),靈活運(yùn)用等差數(shù)列的通項(xiàng)公式化簡求值,屬于中檔題4、C【解析】由余弦定理求出,利用正弦定理將邊化角,再根據(jù)二倍角公式得到,即可得到,最后利用面積公式計(jì)算可得;【詳解】解:因?yàn)?,又,所以,因?yàn)?,所以,所以,因?yàn)?,所以,即,所以或,即或(舍去),所以,因?yàn)?,所以,所以;故選:C5、A【解析】設(shè)出總路程與步行速度、跑步速度,表示出兩人所花時(shí)間后比較不等式大小【詳解】設(shè)總路程為,步行速度,跑步速度對(duì)于甲:,得對(duì)于乙:,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,而,故,乙花時(shí)間多,甲先到體育館故選:A6、C【解析】根據(jù)題意,先求得的值,代入離心率公式,即可得答案.【詳解】因?yàn)?,所以所以,解?故選:C7、A【解析】根據(jù)雙曲線的漸近線方程知,,故選A.8、A【解析】根據(jù)給定條件利用空間向量平行的坐標(biāo)表示直接計(jì)算作答.【詳解】向量,,因,則,解得,所以,B,D都不正確;,C不正確,A正確.故選:A9、D【解析】由圓C的標(biāo)準(zhǔn)方程可得圓心為(1,1),半徑為1,根據(jù)切線的性質(zhì)可得四邊形PACB面積等于,,故求解最小時(shí)即可確定四邊形PACB面積的最小值.【詳解】圓C:x2+y2-2x-2y+1=0即,表示以C(1,1)為圓心,以1為半徑的圓,由于四邊形PACB面積等于2×××=,而,故當(dāng)最小時(shí),四邊形PACB面積最小,又的最小值等于圓心C到直線l:的距離d,而,故四邊形PACB面積的最小值為,故選:D10、D【解析】取的中點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,分析可知點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn)的橢圓,求出橢圓的方程,可知當(dāng)點(diǎn)為橢圓與棱或的交點(diǎn)時(shí),點(diǎn)到平面的距離取最小值,由此可求得四棱錐體積的最小值.【詳解】取的中點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,設(shè)點(diǎn),其中,,則、,因?yàn)槠矫?,平面,則,所以,,同理可得,所以,,所以點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn),且長軸長為的橢圓的一部分,則,,,所以,點(diǎn)的軌跡方程為,點(diǎn)到平面的距離為,當(dāng)點(diǎn)為曲線與棱或棱的交點(diǎn)時(shí),點(diǎn)到平面的距離取最小值,將代入方程得,因此,四棱錐體積的最小值為.故選:D.11、B【解析】分析的單調(diào)性,即可判斷和選擇.【詳解】因?yàn)?,顯然隨著的增大,是遞增的,故是遞減的,則數(shù)列是遞減數(shù)列.故選:B.12、C【解析】設(shè)出圓心坐標(biāo),利用圓心到直線的距離相等列方程,求得圓心坐標(biāo)并求得圓的半徑.【詳解】設(shè)圓心坐標(biāo)為,則或,所以圓的半徑為或.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將原式子變形為:,將代入變形后的式子得到結(jié)果即可.【詳解】將代入變形后的式子得到結(jié)果為故答案為:14、9【解析】先根據(jù)點(diǎn)數(shù)求解概率,再結(jié)合幾何概型求解黑色部分的面積【詳解】由題設(shè)可估計(jì)落入黑色部分概率設(shè)黑色部分的面積為,由幾何概型計(jì)算公式可得解得故答案為:915、##【解析】根據(jù)材料結(jié)合已知條件求得平面的法向量以及直線的方向向量,即可用向量法求得線面角.【詳解】因?yàn)槠矫娴姆匠?,不妨令,則,故其過點(diǎn),設(shè)其法向量為,根據(jù)題意則,即,又平面的方程為,則,不妨取,則,則平面的法向量;經(jīng)過點(diǎn)的直線的方程為,不妨取,則,則該直線過點(diǎn),則直線的方向向量.設(shè)直線與平面所成的角為,則.又,故,即直線l與平面所成角的余弦值為.故答案為:.16、1【解析】利用導(dǎo)數(shù)研究的最小值為,再構(gòu)造研究其最值,即可確定參數(shù)a的值.【詳解】令,則且,當(dāng)時(shí),遞減;當(dāng)時(shí),遞增;所以,即在上恒成立,令,則,當(dāng)時(shí),遞增;當(dāng)時(shí),遞減;所以,綜上,.故答案為:1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)圓心,面積為;(2).【解析】(1)將圓化為標(biāo)準(zhǔn)方程,進(jìn)而求出圓心、半徑和圓的面積;(2)求出圓心到直線的距離,進(jìn)而通過勾股定理求得答案.【小問1詳解】由已知,得:,所以圓心,半徑為,面積為.【小問2詳解】圓心到直線距離為,則.18、(1)(2)【解析】(1)設(shè)的公差為,由等差數(shù)列的通項(xiàng)公式結(jié)合條件可得答案.(2)由(1)可得,由錯(cuò)位相減法可得答案.【小問1詳解】設(shè)的公差為,由已知得且,解得,,所以的通項(xiàng)公式為【小問2詳解】由(1)可得,所以,所以,兩式相減得:,所以,所以19、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設(shè)l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達(dá)定理,根據(jù)得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點(diǎn)坐標(biāo)是,.因?yàn)辄c(diǎn)在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設(shè)l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因?yàn)?,所以,則,即,由,得,.所以,解得,即,所以直線l的方程為.20、(1)證明見解析;(2).【解析】(1)根據(jù)菱形的性質(zhì),結(jié)合面面垂直的性質(zhì)定理、線面垂直的判定定理和性質(zhì)進(jìn)行證明即可;(2)建立空間直角坐標(biāo)系,根據(jù)空間向量夾角公式進(jìn)行求解即可.【詳解】(1)證明:連接,交于點(diǎn),∵四邊形是菱形,∴,∵平面平面,平面平面,,∴平面,∵平面,∴,又,、平面,∴平面,∵平面,∴(2)解:取的中點(diǎn),連接,∵是邊長為4的菱形,,∴,,以為原點(diǎn),,,所在直線分別為,,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,∴,,設(shè)平面的法向量為,則,即,令,則,,∴,同理可得,平面的一個(gè)法向量為,∴,由圖知,平面與平面所成角為銳角,故平面與平面所成角余弦值為21、(1)證明見解析(2)【解析】(1)直線方程變形后令的系數(shù)等于0消去參數(shù)即可求得定點(diǎn)坐標(biāo).(2)先求出圓心C到直線l距離,然后用勾股定理即可求得弦長.【小問1詳解】,聯(lián)立得:即直線l過定點(diǎn)(.【小問2詳解】由題意直線l的斜率,即,∴,圓,圓心,半徑,圓心C到直線l的距離,所以直線l被圓C所截得的弦長為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論