版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆廣東清遠(yuǎn)恒大足球?qū)W校高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的右焦點(diǎn)為,若雙曲線的一條漸近線的傾斜角為,且點(diǎn)到該漸近線的距離為,則雙曲線的實(shí)軸的長(zhǎng)為A. B.C. D.2.若向量,,則與共線的向量可以是()A. B. C. D.3.命題:的否定為A. B.C. D.4.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為坐標(biāo)原點(diǎn)),則k的值為()A. B. C.或- D.和-5.命題“”的否定是()A. B.C. D.6.為得到y(tǒng)=sin(2x-πA.向左平移π3個(gè)單位B.向左平移πC.向右平移π3個(gè)單位D.向右平移π7.我國(guó)南北朝時(shí)的數(shù)學(xué)著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問(wèn)各得金幾何?”則在該問(wèn)題中,等級(jí)較高的二等人所得黃金比等級(jí)較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤8.某市氣象部門(mén)根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯(cuò)誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢(shì)9.記單調(diào)遞增的等比數(shù)列的前項(xiàng)和為,若,,則()A. B. C. D.10.在四邊形中,,,,,,點(diǎn)在線段的延長(zhǎng)線上,且,點(diǎn)在邊所在直線上,則的最大值為()A. B. C. D.11.設(shè)非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件12.一袋中裝有個(gè)紅球和個(gè)黑球(除顏色外無(wú)區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)恒成立,則實(shí)數(shù)的取值范圍是_____.14.若方程有兩個(gè)不等實(shí)根,則實(shí)數(shù)的取值范圍是_____________.15.設(shè)為正實(shí)數(shù),若則的取值范圍是__________.16.如圖,從一個(gè)邊長(zhǎng)為的正三角形紙片的三個(gè)角上,沿圖中虛線剪出三個(gè)全等的四邊形,余下部分再以虛線為折痕折起,恰好圍成一個(gè)缺少上底的正三棱柱,而剪出的三個(gè)相同的四邊形恰好拼成這個(gè)正三棱柱的上底,則所得正三棱柱的體積為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的零點(diǎn);(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于,兩點(diǎn),求證:;(3)若,且不等式對(duì)一切正實(shí)數(shù)x恒成立,求k的取值范圍.18.(12分)為提供市民的健身素質(zhì),某市把四個(gè)籃球館全部轉(zhuǎn)為免費(fèi)民用(1)在一次全民健身活動(dòng)中,四個(gè)籃球館的使用場(chǎng)數(shù)如圖,用分層抽樣的方法從四場(chǎng)館的使用場(chǎng)數(shù)中依次抽取共25場(chǎng),在中隨機(jī)取兩數(shù),求這兩數(shù)和的分布列和數(shù)學(xué)期望;(2)設(shè)四個(gè)籃球館一個(gè)月內(nèi)各館使用次數(shù)之和為,其相應(yīng)維修費(fèi)用為元,根據(jù)統(tǒng)計(jì),得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據(jù)①的結(jié)論,試估計(jì)這四個(gè)籃球館月惠值最大時(shí)的值參考數(shù)據(jù)和公式:,19.(12分)已知,,分別為內(nèi)角,,的對(duì)邊,若同時(shí)滿足下列四個(gè)條件中的三個(gè):①;②;③;④.(1)滿足有解三角形的序號(hào)組合有哪些?(2)在(1)所有組合中任選一組,并求對(duì)應(yīng)的面積.(若所選條件出現(xiàn)多種可能,則按計(jì)算的第一種可能計(jì)分)20.(12分)已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于,兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說(shuō)明理由.21.(12分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率,右準(zhǔn)線為,是上的兩個(gè)動(dòng)點(diǎn),.(Ⅰ)若,求的值;(Ⅱ)證明:當(dāng)取最小值時(shí),與共線.22.(10分)已知雙曲線及直線.(1)若l與C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;(2)若l與C交于A,B兩點(diǎn),O是原點(diǎn),且,求實(shí)數(shù)k的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
雙曲線的漸近線方程為,由題可知.設(shè)點(diǎn),則點(diǎn)到直線的距離為,解得,所以,解得,所以雙曲線的實(shí)軸的長(zhǎng)為,故選B.2、B【解析】
先利用向量坐標(biāo)運(yùn)算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標(biāo)與橫坐標(biāo)對(duì)應(yīng),縱坐標(biāo)與縱坐標(biāo)對(duì)應(yīng),切不可錯(cuò)位.3、C【解析】
命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.4、C【解析】
直線過(guò)定點(diǎn),直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為原點(diǎn)),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線過(guò)定點(diǎn)(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對(duì)稱性可知k=±.故選C.【點(diǎn)睛】本題考查過(guò)定點(diǎn)的直線系問(wèn)題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.5、D【解析】
根據(jù)全稱命題的否定是特稱命題,對(duì)命題進(jìn)行改寫(xiě)即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點(diǎn)睛】本題考查全稱命題的否定,難度容易.6、D【解析】試題分析:因?yàn)?,所以為得到y(tǒng)=sin(2x-π3)的圖象,只需要將考點(diǎn):三角函數(shù)的圖像變換.7、C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C8、D【解析】
根據(jù)折線圖依次判斷每個(gè)選項(xiàng)得到答案.【詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個(gè),故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查了折線圖,意在考查學(xué)生的理解能力.9、C【解析】
先利用等比數(shù)列的性質(zhì)得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進(jìn)而得到數(shù)列的通項(xiàng)和前項(xiàng)和,根據(jù)后兩個(gè)公式可得正確的選項(xiàng).【詳解】因?yàn)闉榈缺葦?shù)列,所以,故即,由可得或,因?yàn)闉檫f增數(shù)列,故符合.此時(shí),所以或(舍,因?yàn)闉檫f增數(shù)列).故,.故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.10、A【解析】
依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,表示出點(diǎn)的坐標(biāo),根據(jù)求出的坐標(biāo),求出邊所在直線的方程,設(shè),利用坐標(biāo)表示,根據(jù)二次函數(shù)的性質(zhì)求出最大值.【詳解】解:依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,由,,,,,,,因?yàn)辄c(diǎn)在線段的延長(zhǎng)線上,設(shè),解得,所在直線的方程為因?yàn)辄c(diǎn)在邊所在直線上,故設(shè)當(dāng)時(shí)故選:【點(diǎn)睛】本題考查向量的數(shù)量積,關(guān)鍵是建立平面直角坐標(biāo)系,屬于中檔題.11、C【解析】
利用數(shù)量積的定義可得,即可判斷出結(jié)論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查推理能力與計(jì)算能力,屬于基礎(chǔ)題.12、A【解析】
由題意可知,隨機(jī)變量的可能取值有、、、,計(jì)算出隨機(jī)變量在不同取值下的概率,進(jìn)而可求得隨機(jī)變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機(jī)變量的可能取值有、、、,則,,,.因此,隨機(jī)變量的數(shù)學(xué)期望為.故選:A.【點(diǎn)睛】本題考查隨機(jī)變量數(shù)學(xué)期望的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
若函數(shù)恒成立,即,求導(dǎo)得,在三種情況下,分別討論函數(shù)單調(diào)性,求出每種情況時(shí)的,解關(guān)于的不等式,再取并集,即得?!驹斀狻坑深}意得,只要即可,,當(dāng)時(shí),令解得,令,解得,單調(diào)遞減,令,解得,單調(diào)遞增,故在時(shí),有最小值,,若恒成立,則,解得;當(dāng)時(shí),恒成立;當(dāng)時(shí),,單調(diào)遞增,,不合題意,舍去.綜上,實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題考查恒成立條件下,求參數(shù)的取值范圍,是常考題型。14、【解析】
由知x>0,故.令,則.當(dāng)時(shí),;當(dāng)時(shí),.所以在(0,e)上遞增,在(e,+)上遞減.故,即.15、【解析】
根據(jù),可得,進(jìn)而,有,而,令,得到,再用導(dǎo)數(shù)法求解,【詳解】因?yàn)?,所以,所以,所以,所以,令,,所以,?dāng)時(shí),,當(dāng)時(shí),所以當(dāng)時(shí),取得最大值,又,所以取值范圍是,故答案為:【點(diǎn)睛】本題主要考查基本不等式的應(yīng)用和導(dǎo)數(shù)法求最值,還考查了運(yùn)算求解的能力,屬于難題,16、1【解析】
由題意得正三棱柱底面邊長(zhǎng)6,高為,由此能求出所得正三棱柱的體積.【詳解】如圖,作,交于,,由題意得正三棱柱底面邊長(zhǎng),高為,所得正三棱柱的體積為:.故答案為:1.【點(diǎn)睛】本題考查立體幾何中的翻折問(wèn)題、正三棱柱體積的求法、三棱柱的結(jié)構(gòu)特征等基礎(chǔ)知識(shí),考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意翻折前后的不變量.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)x=1(2)證明見(jiàn)解析(3)【解析】
(1)令,根據(jù)導(dǎo)函數(shù)確定函數(shù)的單調(diào)區(qū)間,求出極小值,進(jìn)而求解;(2)轉(zhuǎn)化思想,要證,即證,即證,構(gòu)造函數(shù)進(jìn)而求證;(3)不等式對(duì)一切正實(shí)數(shù)恒成立,,設(shè),分類討論進(jìn)而求解.【詳解】解:(1)令,所以,當(dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),,在單調(diào)遞減;所以,所以的零點(diǎn)為.(2)由題意,,要證,即證,即證,令,則,由(1)知,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,即,所以原不等式成立.(3)不等式對(duì)一切正實(shí)數(shù)恒成立,,設(shè),,記,△,①當(dāng)△時(shí),即時(shí),恒成立,故單調(diào)遞增.于是當(dāng)時(shí),,又,故,當(dāng)時(shí),,又,故,又當(dāng)時(shí),,因此,當(dāng)時(shí),,②當(dāng)△,即時(shí),設(shè)的兩個(gè)不等實(shí)根分別為,,又,于是,故當(dāng)時(shí),,從而在單調(diào)遞減;當(dāng)時(shí),,此時(shí),于是,即舍去,綜上,的取值范圍是.【點(diǎn)睛】(1)考查函數(shù)求導(dǎo),根據(jù)導(dǎo)函數(shù)確定函數(shù)的單調(diào)性,零點(diǎn);(2)考查轉(zhuǎn)化思想,構(gòu)造函數(shù)求極值;(3)考查分類討論思想,函數(shù)的單調(diào)性,函數(shù)的求導(dǎo);屬于難題.18、(1)見(jiàn)解析,12.5(2)①②20【解析】
(1)運(yùn)用分層抽樣,結(jié)合總場(chǎng)次為100,可求得的值,再運(yùn)用古典概型的概率計(jì)算公式可求解果;(2)①由公式可計(jì)算的值,進(jìn)而可求與的回歸直線方程;②求出,再對(duì)函數(shù)求導(dǎo),結(jié)合單調(diào)性,可估計(jì)這四個(gè)籃球館月惠值最大時(shí)的值.【詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數(shù)之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因?yàn)樗?,,;②,設(shè),所以當(dāng)遞增,當(dāng)遞減所以約惠值最大值時(shí)的值為20【點(diǎn)睛】本題考查直方圖的實(shí)際應(yīng)用,涉及求概率,平均數(shù)、擬合直線和導(dǎo)數(shù)等問(wèn)題,關(guān)鍵是要讀懂題意,屬于中檔題.19、(1)①,③,④或②,③,④;(2).【解析】
(1)由①可求得的值,由②可求出角的值,結(jié)合題意得出,推出矛盾,可得出①②不能同時(shí)成為的條件,由此可得出結(jié)論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對(duì)應(yīng)的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以,因?yàn)?,且,所以,所以,矛?所以不能同時(shí)滿足①,②.故滿足①,③,④或②,③,④;(2)若滿足①,③,④,因?yàn)?,所以,?解得.所以的面積.若滿足②,③,④由正弦定理,即,解得,所以,所以的面積.【點(diǎn)睛】本題考查三角形能否成立的判斷,同時(shí)也考查了利用正弦定理和余弦定理解三角形,以及三角形面積的計(jì)算,要結(jié)合三角形已知元素類型合理選擇正弦定理或余弦定理解三角形,考查運(yùn)算求解能力,屬于中等題.20、(1)證明見(jiàn)解析;(2)是,理由見(jiàn)解析.【解析】
(1)根據(jù)判別式即可證明.(2)根據(jù)向量的數(shù)量積和韋達(dá)定理即可證明,需要分類討論,【詳解】解:(1)當(dāng)時(shí)直線方程為或,直線與橢圓相切.當(dāng)時(shí),由得,由題知,,即,所以.故直線與橢圓相切.(2)設(shè),,當(dāng)時(shí),,,,所以,即.當(dāng)時(shí),由得,則,,.因?yàn)?所以,即.故為定值.【點(diǎn)睛】本題考查橢圓的簡(jiǎn)單性質(zhì),考查向量的運(yùn)算,注意直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.21、(Ⅰ)(Ⅱ)證明見(jiàn)解析.【解析】由與,得,,的方程為.設(shè),則,由得.①(Ⅰ)由,得,②,③由①、②、③三式,消去,并求得,故.(Ⅱ),當(dāng)且僅當(dāng)或時(shí),取最
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職市場(chǎng)營(yíng)銷(xiāo)(產(chǎn)品推銷(xiāo))試題及答案
- 2025年中職冶金安全(冶金安全技術(shù))試題及答案
- 2026年作家(文學(xué)創(chuàng)作)考題及答案
- 大學(xué)(藝術(shù)設(shè)計(jì)學(xué))形象設(shè)計(jì)基礎(chǔ)2026年階段測(cè)試題及答案
- 2025年大學(xué)大三(林業(yè)經(jīng)濟(jì)管理)林業(yè)產(chǎn)業(yè)運(yùn)營(yíng)實(shí)務(wù)試題及答案
- 2025年高職園藝技術(shù)(植物營(yíng)養(yǎng)與施肥)試題及答案
- 2025年高職(云計(jì)算應(yīng)用)云服務(wù)應(yīng)用開(kāi)發(fā)階段測(cè)試題及答案
- 2025年大學(xué)國(guó)際經(jīng)濟(jì)與貿(mào)易(國(guó)際經(jīng)濟(jì)與貿(mào)易教育心理學(xué))試題及答案
- 2025年大學(xué)動(dòng)畫(huà)(動(dòng)畫(huà)基礎(chǔ)設(shè)計(jì))試題及答案
- 2026年海口經(jīng)濟(jì)學(xué)院?jiǎn)握芯C合素質(zhì)筆試參考題庫(kù)帶答案解析
- 云南師大附中2026屆高三高考適應(yīng)性月考卷(六)思想政治試卷(含答案及解析)
- 建筑安全風(fēng)險(xiǎn)辨識(shí)與防范措施
- CNG天然氣加氣站反恐應(yīng)急處置預(yù)案
- 培訓(xùn)教師合同范本
- 2026年黑龍江單招職業(yè)技能案例分析專項(xiàng)含答案健康養(yǎng)老智慧服務(wù)
- 2025年5年級(jí)期末復(fù)習(xí)-25秋《王朝霞期末活頁(yè)卷》語(yǔ)文5上A3
- (2025)70周歲以上老年人換長(zhǎng)久駕照三力測(cè)試題庫(kù)(附答案)
- 醫(yī)院外科主任職責(zé)說(shuō)明書(shū)
- 2025年醫(yī)院突發(fā)公共衛(wèi)生事件應(yīng)急預(yù)案
- 寺廟勞動(dòng)合同范本
- DIP支付模式下骨科臨床路徑優(yōu)化策略
評(píng)論
0/150
提交評(píng)論