(完整版)蘇教七年級下冊期末解答題壓軸數學真題模擬題目A卷_第1頁
(完整版)蘇教七年級下冊期末解答題壓軸數學真題模擬題目A卷_第2頁
(完整版)蘇教七年級下冊期末解答題壓軸數學真題模擬題目A卷_第3頁
(完整版)蘇教七年級下冊期末解答題壓軸數學真題模擬題目A卷_第4頁
(完整版)蘇教七年級下冊期末解答題壓軸數學真題模擬題目A卷_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

(完整版)蘇教七年級下冊期末解答題壓軸數學真題模擬題目A卷一、解答題1.(1)如圖1,∠BAD的平分線AE與∠BCD的平分線CE交于點E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度數;(2)如圖2,∠BAD的平分線AE與∠BCD的平分線CE交于點E,∠ADC=α°,∠ABC=β°,求∠AEC的度數;(3)如圖3,PQ⊥MN于點O,點A是平面內一點,AB、AC交MN于B、C兩點,AD平分∠BAC交PQ于點D,請問的值是否發(fā)生變化?若不變,求出其值;若改變,請說明理由.2.閱讀下列材料并解答問題:在一個三角形中,如果一個內角的度數是另一個內角度數的3倍,那么這樣的三角形我們稱為“夢想三角形”例如:一個三角形三個內角的度數分別是120°,40°,20°,這個三角形就是一個“夢想三角形”.反之,若一個三角形是“夢想三角形”,那么這個三角形的三個內角中一定有一個內角的度數是另一個內角度數的3倍.(1)如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內角的度數為__________(2)如圖1,已知∠MON=60°,在射線OM上取一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交線段OB于點C(點C不與O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“夢想三角形”,為什么?(3)如圖2,點D在△ABC的邊上,連接DC,作∠ADC的平分線交AC于點E,在DC上取一點F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“夢想三角形”,求∠B的度數.3.如圖,在中,是高,是角平分線,,.()求、和的度數.()若圖形發(fā)生了變化,已知的兩個角度數改為:當,,則__________.當,時,則__________.當,時,則__________.當,時,則__________.()若和的度數改為用字母和來表示,你能找到與和之間的關系嗎?請直接寫出你發(fā)現的結論.4.如圖,直線m與直線n互相垂直,垂足為O、A、B兩點同時從點O出發(fā),點A沿直線m向左運動,點B沿直線n向上運動.(1)若∠BAO和∠ABO的平分線相交于點Q,在點A,B的運動過程中,∠AQB的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值,若發(fā)生變化,請說明理由.(2)若AP是∠BAO的鄰補角的平分線,BP是∠ABO的鄰補角的平分線,AP、BP相交于點P,AQ的延長線交PB的延長線于點C,在點A,B的運動過程中,∠P和∠C的大小是否會發(fā)生變化?若不發(fā)生變化,請求出∠P和∠C的度數;若發(fā)生變化,請說明理由.5.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數;(3)如圖3,點F是平面上的一點,連結FA、FB,E是射線FA上的一點,若,,且,求n的值.6.已知,如圖1,射線PE分別與直線AB、CD相交于E、F兩點,∠PFD的平分線與直線AB相交于點M,射線PM交CD于點N,設∠PFM=,∠EMF=,且.(1)=____°,=______°;直線AB與CD的位置關系是_______;(2)如圖2,若點G是射線MA上任意一點,且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數量關系,并證明你的結論:(3)若將圖中的射線PM繞著端點P逆時針方向旋轉(如圖3),分別與AB、CD相交于點M和點N,時,作∠PMB的角平分線MQ與射線FM相交于點Q,問在旋轉的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.7.如圖,,點在直線上,點在直線和之間,,平分.(1)求的度數(用含的式子表示);(2)過點作交的延長線于點,作的平分線交于點,請在備用圖中補全圖形,猜想與的位置關系,并證明;(3)將(2)中的“作的平分線交于點”改為“作射線將分為兩個部分,交于點”,其余條件不變,連接,若恰好平分,請直接寫出__________(用含的式子表示).8.我們知道:光線反射時,反射光線、入射光線分別在法線兩側,反射角等于入射角.如圖1,為一鏡面,為入射光線,入射點為點O,為法線(過入射點O且垂直于鏡面的直線),為反射光線,此時反射角等于入射角,由此可知等于.(1)兩平面鏡、相交于點O,一束光線從點A出發(fā),經過平面鏡兩次反射后,恰好經過點B.①如圖2,當為多少度時,光線?請說明理由.②如圖3,若兩條光線、所在的直線相交于點E,延長發(fā)現和分別為一個內角和一個外角的平分線,則與之間滿足的等量關系是_______.(直接寫出結果)(2)三個平面鏡、、相交于點M、N,一束光線從點A出發(fā),經過平面鏡三次反射后,恰好經過點E,請直接寫出、、與之間滿足的等量關系.9.如圖1,已知,是直線,外的一點,于點,交于點,滿足.(1)求的度數;(2)如圖2,射線從出發(fā),以每秒的速度繞點按逆時針方向勻速旋轉,當到達時立刻返回至,然后繼續(xù)按上述方式旋轉;射線從出發(fā),以相同的速度繞點按順時針方向旋轉至后停止運動,此時射線也停止運動.若射線、射線同時開始運動,設運動時間為秒.①當射線平分時,求的度數;②當直線與直線相交所成的銳角是時,則________.10.已知:如圖1直線、被直線所截,.(1)求證:;(2)如圖2,點E在,之間的直線上,P、Q分別在直線、上,連接、,平分,平分,則和之間有什么數量關系,請直接寫出你的結論;(3)如圖3,在(2)的條件下,過P點作交于點H,連接,若平分,,求的度數.【參考答案】一、解答題1.(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質,可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,則可得∠E=(∠D+∠B),繼而求得答案;(2)首先延長BC交AD于點F,由三角形外角的性質,可得∠BCD=∠B+∠BAD+∠D,又由角平分線的性質,即可求得答案.(3)由三角形內角和定理,可得,利用角平分線的性質與三角形的外角的性質可得答案.【詳解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延長BC交AD于點F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不發(fā)生變化,理由如下:如圖,記與交于,與交于,①,②,①-②得:AD平分∠BAC,【點睛】此題考查了三角形內角和定理、三角形外角的性質以及角平分線的定義.此題難度較大,注意掌握整體思想與數形結合思想的應用.2.(1)36°或18°;(2)△AOB、△AOC都是“夢想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據三角形內角和等于180°,如果一個“夢想三角形”有一個角為108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“夢想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據三角形內角和等于180°,如果一個“夢想三角形”有一個角為108°,可得另兩個角的和為72°,由三角形中一個內角是另一個內角的3倍時,可以分別求得最小角為180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比較得出答案即可;(2)根據垂直的定義、三角形內角和定理求出∠ABO、∠OAC的度數,根據“夢想三角形”的定義判斷即可;(3)根據同角的補角相等得到∠EFC=∠ADC,根據平行線的性質得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根據角平分線的定義得到∠ADE=∠CDE,求得∠B=∠BCD,根據“夢想三角形”的定義求解即可.【詳解】解:當108°的角是另一個內角的3倍時,最小角為180°﹣108°﹣108÷3°=36°,當180°﹣108°=72°的角是另一個內角的3倍時,最小角為72°÷(1+3)=18°,因此,這個“夢想三角形”的最小內角的度數為36°或18°.故答案為:18°或36°.(2)△AOB、△AOC都是“夢想三角形”證明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB為“夢想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“夢想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“夢想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=.【點睛】本題考查的是三角形內角和定理、“夢想三角形”的概念,用分類討論的思想解決問題是解本題的關鍵.3.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當時,;當時,.【分析】(1)先利用三角形內角和定理求出的度數,再根據角平分線和高的性質分別得出和的度數,進而可求和的度數;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當時,;當時,.【分析】(1)先利用三角形內角和定理求出的度數,再根據角平分線和高的性質分別得出和的度數,進而可求和的度數;(2)先利用三角形內角和定理求出的度數,再根據角平分線和高的性質分別得出和的度數,則前三問利用即可得出答案,第4問利用即可得出答案;(3)按照(2)的方法,將相應的數換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當,時,∵,,∴.∵平分,∴.∵是高,,,;當,時,∵,,∴.∵平分,∴.∵是高,,,;當,時,∵,,∴.∵平分,∴.∵是高,,,;當,時,∵,,∴.∵平分,∴.∵是高,,,.(3)當時,即時,∵,,∴.∵平分,∴.∵是高,,,;當時,即時,∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當時,;當時,.【點睛】本題主要考查三角形內角和定理和三角形的角平分線,高,掌握三角形內角和定理和直角三角形兩銳角互余是解題的關鍵.4.(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BA解析:(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BAQ與∠ABQ的和,最后在△ABQ中,根據三角形的內角各定理可求∠AQB的大?。?2)題求∠P的大小,用鄰補角、角平分線、平角、直角和三角形內角和定理等知識求解.【詳解】解:(1)∠AQB的大小不發(fā)生變化,如圖1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分別是∠BAO和∠ABO的角平分線,∴∠BAQ=∠BAC,∠ABQ=∠ABO,∴∠BAQ+∠ABQ=(∠ABO+∠BAO)=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如圖2所示:①∠P的大小不發(fā)生變化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分別是∠BAE和∠ABP的角平分線,∴∠PAB=∠EAB,∠PBA=∠ABF,∴∠PAB+∠PBA=(∠EAB+∠ABF)=×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不變,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【點睛】本題考查三角形內角和定理,垂直,角平分線,平角,直角和角的和差等知識點,同時,也是一個以靜求動的一個點型題目,有益于培養(yǎng)學生的思維幾何綜合題.5.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點E、F,先根據角平分線求得,再根據平行線的性質得到;進一步求得,,然后根據三角形外角的性質解答即可;(3)設BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經檢驗:是原方程的根,且符合題意.【點睛】本題主要考查平行線的性質及應用,正確作出輔助線、構造平行線、再利用平行線性質進行求解是解答本題的關鍵.6.(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見解析;(3)的值不變,=2.【分析】(1)利用非負數的性質可知:==35,推出即可解決問題;(2)結論,只要證明即可解決解析:(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見解析;(3)的值不變,=2.【分析】(1)利用非負數的性質可知:==35,推出即可解決問題;(2)結論,只要證明即可解決問題;(3)結論:的值不變,=2.如圖3中,作∠PEM1的平分線交M1Q的延長線于R,只要證明∠R=∠,∠=2∠R即可;【詳解】(1)證明:∵,∴==35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;故答案為:35;35;AB∥CD;(2)解:∠FMN+∠GHF=180°.理由:∵AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°.(3)解:的值不變,=2.理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R.∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠=∠R,設∠PER=∠REB=,,則有:,可得∠=2∠R,∴∠=2∠∴=2.【點睛】本題考查幾何變換綜合題、平行線的判定和性質、角平分線的定義、非負數的性質等知識,解題的關鍵是靈活運用所學知識解決問題,學會添加常用輔助線,構造平行線解決問題,屬于中考壓軸題.7.(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據平行線的傳遞性推出,再利用平行線的性質進行求解;(2)猜測,根據平分,推導出,再根據、平分,通過等量代換求解;(3)分兩種情解析:(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據平行線的傳遞性推出,再利用平行線的性質進行求解;(2)猜測,根據平分,推導出,再根據、平分,通過等量代換求解;(3)分兩種情況進行討論,即當與,充分利用平行線的性質、角平分線的性質、等量代換的思想進行求解.【詳解】(1)過點作,,,,.(2)根據題意,補全圖形如下:猜測,由(1)可知:,平分,,,,,又平分,,,.(3)①如圖1,,由(2)可知:,,,,,,,,,,又平分,,;②如圖2,,(同①);若,則有,又,,,,綜上所述:或,故答案是:或.【點睛】本題考查了平行線的性質、角平分線、三角形內角和定理、垂直等相關知識點,解題的關鍵是掌握相關知識點,作出適當的輔助線,通過分類討論及等量代換進行求解.8.(1)①90°,理由見解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據∠AMN+∠BNM=解析:(1)①90°,理由見解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據∠AMN+∠BNM=180°,可得α+β=90°,再根據三角形內角和定理進行計算即可;②設∠AMP=∠NMO=α,∠BNO=∠MNQ=β,根據三角形外角性質可得∠MEN=2(β-α),再根據三角形外角性質可得∠POQ=β-α,進而得出∠MEN=2∠POQ;(2)分別表示出∠M,∠N,∠BCD,利用四邊形內角和表示出∠BFD,再將∠M,∠N,∠BCD進行運算,變形得到∠BFD,即可得到關系式.【詳解】解:(1)①設∠AMP=∠NMO=α,∠BNQ=∠MNO=β,當AM∥BN時,∠AMN+∠BNM=180°,即180°-2α+180°-2β=180°,∴180°=2(α+β),∴α+β=90°,∴△MON中,∠O=180°-∠NMO-∠MNO=180°-(α+β)=90°,∴當∠POQ為90度時,光線AM∥NB;②設∠AMP=∠NMO=α,∠BNO=∠MNQ=β,∴∠AMN=180°-2α,∠MNE=180°-2β,∵∠AMN是△MEN的外角,∴∠MEN=∠AMN-∠MNE=(180°-2α)-(180°-2β)=2(β-α),∵∠MNQ是△MNO的外角,∴∠POQ=∠MNQ-∠NMO=β-α,∴∠MEN=2∠POQ;(2)設∠PBE=∠MBC=∠1,∠MCB=∠NCD=∠2,∠CDN=∠ADQ=∠3,可知:∠M=180°-∠1-∠2,∠N=180°-∠2-∠3,∠BCD=180°-2∠2,∵∠CBA=180°-2∠1,∠CDA=180°-2∠3,∴∠BFD=360°-∠CDA-∠CBA-∠BCD=360°-(180°-2∠1)-(180°-2∠2)-(180°-2∠3)=2(∠1+∠2+∠3)-180°又∵2(∠M+∠N)-∠BCD=2(180°-∠1-∠2+180°-∠2-∠3)-(180°-2∠2)=540°-2(∠1+∠2+∠3)=360°-[2(∠1+∠2+∠3)-180°]=360°-∠BFD∴2(∠M+∠N)-∠BCD=360°-∠BFD.【點睛】本題考查了平行線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論