2026年春期人教版六年級下冊數(shù)學 第六單元 總復習 核心素養(yǎng)教案_第1頁
2026年春期人教版六年級下冊數(shù)學 第六單元 總復習 核心素養(yǎng)教案_第2頁
2026年春期人教版六年級下冊數(shù)學 第六單元 總復習 核心素養(yǎng)教案_第3頁
2026年春期人教版六年級下冊數(shù)學 第六單元 總復習 核心素養(yǎng)教案_第4頁
2026年春期人教版六年級下冊數(shù)學 第六單元 總復習 核心素養(yǎng)教案_第5頁
已閱讀5頁,還剩96頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第六單元單元整體設計單元名稱整理和復習一、單元教材分析:本單元作為小學階段數(shù)學知識的系統(tǒng)整理與復習,全面涵蓋了數(shù)與代數(shù)、圖形與幾何、統(tǒng)計與概率、數(shù)學思考及綜合與實踐五大領域。教材通過分類梳理(如數(shù)的認識、運算律、圖形特征)、實際應用(如綠色出行數(shù)據(jù)分析、旅游預算規(guī)劃)與探究活動(如杠桿原理實驗、點線規(guī)律探索),引導學生構建知識網(wǎng)絡,強化知識間的聯(lián)系。內容設計注重綜合性與實踐性,例如通過北京五日游項目融合計算、規(guī)劃與決策能力培養(yǎng),體現(xiàn)數(shù)學與生活的深度融合,為學生升入初中奠定堅實的認知基礎與方法論準備。二、學情分析:六年級學生已掌握小學數(shù)學核心知識,但知識分布零散,缺乏系統(tǒng)整合能力。在復習過程中,學生可能對抽象概念(如比例與方程的區(qū)別)的理解不夠透徹,或在復雜情境中靈活運用知識(如統(tǒng)計圖表與實際問題的結合)時存在困難。部分學生容易混淆相似知識點(如平面圖形與立體圖形的計算公式),且解決跨學科實際問題(如環(huán)保數(shù)據(jù)計算)時需加強建模能力。此外,學生需在復習中提升歸納總結與遷移應用的能力。三、單元教學目標:學生能系統(tǒng)梳理數(shù)與代數(shù)、圖形與幾何、統(tǒng)計與概率等領域的核心知識,掌握知識間的內在聯(lián)系;能綜合運用數(shù)學知識解決實際問題(如旅游規(guī)劃、平衡實驗),提升計算、推理與數(shù)據(jù)分析能力;在復習過程中形成結構化認知,發(fā)展應用意識與創(chuàng)新思維。四、核心素養(yǎng)目標:①情境與問題:在真實情境中識別數(shù)學要素,提出綜合性問題并制定解決策略。②知識與技能:系統(tǒng)掌握數(shù)的運算、圖形計算、統(tǒng)計方法等核心知識,能準確運用公式與規(guī)律解決復雜問題。③思維與表達:通過分類比較、規(guī)律探索(如點線數(shù)量關系)培養(yǎng)邏輯推理與模型建構能力,并能清晰表達思考過程。④交流與反思:在合作探究(如杠桿原理實驗)中優(yōu)化方案,反思數(shù)學在生活中的價值,形成可持續(xù)發(fā)展觀念。五、教學重難點:重點:引導學生構建知識體系,強化知識間的橫縱向聯(lián)系,并能綜合運用解決跨領域問題;難點:幫助學生突破概念混淆點,提升在開放情境中的數(shù)學建模與創(chuàng)新應用能力。

課題1.數(shù)的認識授課者:課型:新授課時:第1課時一、教材內容分析:以北京冬奧會這一真實情境為載體,系統(tǒng)整合小學階段所學的各類數(shù)概念。教材通過呈現(xiàn)冬奧會中的運動員人數(shù)、金牌占比、碳排放比例、溫度范圍等豐富數(shù)據(jù),自然引出整數(shù)、小數(shù)、分數(shù)、百分數(shù)、負數(shù)等知識點的實際應用,并引導學生通過分類圖表構建數(shù)概念體系,同時圍繞十進制計數(shù)法、數(shù)位與計數(shù)單位的區(qū)別、因數(shù)與倍數(shù)關系、小數(shù)點移動規(guī)律等核心內容設置探究性問題,旨在幫助學生建立完整的數(shù)概念知識網(wǎng)絡,深化對數(shù)的意義和關聯(lián)的理解。二、學情分析:經(jīng)過六年的學習,學生已經(jīng)積累了整數(shù)、小數(shù)、分數(shù)、百分數(shù)等豐富的數(shù)概念認知,并具備了一定的生活應用經(jīng)驗,但尚未形成系統(tǒng)化的知識結構。面對分散學習的各類數(shù)概念,學生可能難以主動建立知識間的橫向聯(lián)系,對十進制計數(shù)法的整體架構、數(shù)位與計數(shù)單位的本質區(qū)別等抽象內容的理解仍需深化;同時,將實際情境中的復雜數(shù)據(jù)準確對應到相應的數(shù)概念類別,并理解其具體含義,對學生而言既是綜合應用的挑戰(zhàn),也是系統(tǒng)梳理已有知識的重要契機。三、核心素養(yǎng)目標:①情境與問題:通過北京冬奧會真實數(shù)據(jù)創(chuàng)設情境,引導學生發(fā)現(xiàn)生活中數(shù)的多樣性,提出"如何系統(tǒng)整理小學階段學過的數(shù)"的數(shù)學問題。②知識與技能:掌握整數(shù)、小數(shù)、分數(shù)、百分數(shù)、負數(shù)的意義和分類方法,理解數(shù)位順序表和數(shù)的性質。③思維與表達:能夠用分類、比較的方法構建數(shù)系知識結構,用數(shù)學語言描述數(shù)的意義和相互關系。④交流與反思:在小組合作繪制思維導圖的過程中,分享數(shù)的分類方法,反思數(shù)系知識的內在聯(lián)系。思政元素:通過北京冬奧會綠色辦奧理念中的數(shù)據(jù),滲透環(huán)保意識,培養(yǎng)民族自豪感和科學精神。四、教學重難點:教學重點:理解各類數(shù)的意義,掌握數(shù)的分類方法,建立完整的數(shù)系知識體系。教學難點:理解無限不循環(huán)小數(shù)等抽象概念,把握各類數(shù)之間的內在聯(lián)系與區(qū)別。五、教學準備:數(shù)的分類卡片、數(shù)位順序表、數(shù)軸圖、思維導圖模板、多媒體課件。六、學習活動設計:教學環(huán)節(jié)一:情境導入,發(fā)現(xiàn)問題教師活動學生活動設計意圖二次備課1.數(shù)學課離不開數(shù),今天我們就一起來對所學過的數(shù)進行一個系統(tǒng)的整理和復習?,F(xiàn)在請同學們來讀一讀課本71頁的信息,討論一下從哪幾個方面來復習這部分內容。第24屆冬季奧林匹克運動會于2022年2月4日至2月20日在北京和河北張家口舉行。來自91個國家和地區(qū)的代表團總計2880名運動員參加了7個大項(包括15個分項、109個小項)的比賽。中國代表團共有176名運動員參加了比賽,其中女運動員87人,占49.43%;男運動員89人,占50.57%;運動員平均年齡25.2歲。中國代表團獲得了9枚金牌、4枚銀牌和2枚銅牌,列金牌榜第三位,金牌數(shù)和獎牌數(shù)均創(chuàng)歷史新高。共有1.9萬名志愿者參加了志愿服務。本屆冬奧會踐行“綠色辦奧”的理念,實現(xiàn)了低碳、節(jié)能、環(huán)保的目標。本屆冬奧會的主火炬采用“微火”技術,其碳排放量大約只有傳統(tǒng)點火方式的1/5000;國家速滑館“冰絲帶”采用二氧化碳制冷技術,碳排放量約是傳統(tǒng)制冰技術的1/4000。設計團隊開發(fā)的智慧場館系統(tǒng),能將“冰絲帶”的冰面溫度精確地維持在-11~-10℃。2.小結:我們學過整數(shù)、小數(shù)、分數(shù)、百分數(shù)、負數(shù)等,這些數(shù)在我們的生活中應用非常廣泛,我們的生產(chǎn)、生活都離不開數(shù),這就是我們今天要一起溫故的內容:數(shù)的意義?!景鍟n題:數(shù)的認識】1.同學們看過屏幕上的信息后,同桌討論確定小學階段需要整理的與數(shù)有關的問題。預設1:我們都學過哪些數(shù)?預設2:舉實例說說它們分別表示的意義?預設3:數(shù)是如何分類的?2.全班交流。預設1:有整數(shù),有小數(shù),有負數(shù),有分數(shù),還有百分數(shù)。預設2:還有正數(shù)、負數(shù)、真分數(shù)、假分數(shù)、有限小數(shù)、無限小數(shù)。預設3:91個國家表示國家的數(shù)量。預設4:其中女運動員87人,占49.43%。這里的49.43%表示女運動員占中國運動員總數(shù)的49.43%。學生通過對所學舊知的整體回顧,從而能更好地對所學知識進行系統(tǒng)的歸納和整理。加強數(shù)感的培養(yǎng)。教學環(huán)節(jié)二:引導合作,探究問題教師活動學生活動設計意圖二次備課1.數(shù)的意義。你們知道這些數(shù)在信息中的含義嗎?(1)這本詞典有1722頁。(2)珠穆朗瑪峰的高度是8848.86m。(3)南極洲的年平均氣溫是-25℃。(4)我市一年空氣質量達到良好的天數(shù)為3/5。(5)一條圍巾的羊毛含量占40%。2.數(shù)的分類與聯(lián)系。我們學過整數(shù)、小數(shù)、分數(shù)、百分數(shù)、負數(shù)等,如果我們把這些數(shù)進行分類,可以怎樣分?同桌交流。小結:(1)自然數(shù)和整數(shù)的關系。自然數(shù)是整數(shù)的一部分。整數(shù)(2)分數(shù)和百分數(shù)的關系。聯(lián)系:百分數(shù)是一種特殊的分數(shù)。區(qū)別:意義不同,實際應用不同。分數(shù)可化成最簡分數(shù),百分數(shù)不能約分。分數(shù)百分數(shù)(3)小數(shù)的分類。按照小數(shù)部分的位數(shù)來分類。小數(shù)有限小數(shù)在剛才的交流過程中,我們不僅對整數(shù)、分數(shù)和小數(shù)分別進行了分類,而且區(qū)分了百分數(shù)和分數(shù)。3.深化數(shù)的聯(lián)系。(1)借助帶箭頭的直線深化數(shù)的聯(lián)系。我們學過的數(shù)還可以在帶箭頭的直線上表示。你能在帶箭頭的直線上表示幾個數(shù)嗎?觀察這條帶箭頭的直線,你有什么發(fā)現(xiàn)?(2)借助數(shù)位順序表再次鞏固數(shù)的聯(lián)系。整數(shù)、小數(shù)和分數(shù)之間又有什么內在的聯(lián)系呢?這得從我們的計數(shù)方法說起。思考①:什么是十進制計數(shù)法?數(shù)位和計數(shù)單位有什么區(qū)別?完成教材第72頁第3題表格。交流討論。思考②:關于小數(shù)你想到哪些知識?可以舉例說明。思考③:請在數(shù)位順序表下分別寫出1萬和1億,舉例說明它們有多大?同桌交流,全班匯報(3)數(shù)的整除。你能根據(jù)a÷b=c(a、b、c為整數(shù)且b≠0)說明因數(shù)和倍數(shù)的含義嗎?有什么特點?在因數(shù)和倍數(shù)的基礎上說一說質數(shù)與合數(shù)、奇數(shù)與偶數(shù)的判斷標準。同桌交流,全班反饋。4.繪制思維導圖。同學們,我們剛才回憶了所有關于“數(shù)”的知識點,這些知識并不是孤立存在的,而是密切聯(lián)系的。你能用思維導圖的方式把這些知識整理一下么?小組交流,全班反饋整理。1.同桌相互說一說數(shù)的意義,全班交流。學生的回答:預設1:1722表示詞典的頁數(shù),是一個整數(shù)。預設2:8848.86m表示珠穆朗瑪峰的高度,是一個兩位小數(shù)。預設3:-25℃表示南極洲的年平均氣溫在0℃以下,很低,是一個負數(shù)。預設4:3/5表示把我市全年的天數(shù)看作5份,空氣質量達到良好的天數(shù)占其中的3份。預設5:40%表示羊毛含量占圍巾成分的40%,是一個百分數(shù)。2.學生獨立思考后,與同桌交流,寫出分類方法,小組合作完善,匯報交流。預設1:整數(shù)、小數(shù)、百分數(shù)、分數(shù)。預設2:正整數(shù)、小數(shù)、百分數(shù)、分數(shù)、負數(shù)。預設3:自然數(shù)、小數(shù)、分數(shù)、負數(shù)。預設4:我的整數(shù)分類。整數(shù)正整數(shù)預設5:分數(shù)分類。預設6:小數(shù)分類。小數(shù)有限小數(shù)3.(1)同學們獨立思考,獨立完成,完成后小組內交流。預設1:預設2:直線上的數(shù)越往左越小,越往右越大。預設3:以0為界,0左邊是負數(shù),0右邊是正數(shù)。預設4:0既不是正數(shù),也不是負數(shù)。預設5:所有的正數(shù)都大于負數(shù),所有的負數(shù)都小于正數(shù)。(2)思考①:同學們獨立思考,獨立完成,完成后小組內交流。預設1:每相鄰兩個計數(shù)單位間的進率是10的計數(shù)方法叫十進制計數(shù)法。預設2:整數(shù)和小數(shù)都是按十進制計數(shù)法寫出的數(shù),其中個、十、百……以及十分之一、百分之一……都是計數(shù)單位。預設3:各個計數(shù)單位所占的位置,叫作數(shù)位。數(shù)位是按一定順序排列的。預設4:整數(shù)的最小計數(shù)單位是1,而小數(shù)沒有最小的計數(shù)單位。思考②:小組討論后,全班交流匯報。預設1:什么是小數(shù)的基本性質?比如3.06和3.0600、0.7和0.007等。預設2:在這里我們可以怎么將分數(shù)的計數(shù)單位和小數(shù)的計數(shù)單位聯(lián)系起來?預設3:分數(shù)的基本性質與小數(shù)的基本性質有什么聯(lián)系?思考③:小組討論后,全班交流匯報。預設:10000個1萬是1億。(3)小組討論后,全班交流匯報。預設1:a是b和c的倍數(shù),b和c是a的因數(shù)。預設2:最小的因數(shù)是1,最大的因數(shù)的是它本身;最小的倍數(shù)是它本身,沒有最大的倍數(shù)。預設3:只有1和它本身兩個因數(shù)的是質數(shù);除了1和它本身還有其他因數(shù)的是合數(shù)。預設4:是2的倍數(shù)的是偶數(shù);不是2的倍數(shù)的是奇數(shù)。4.小組討論,繪制出簡單的思維導圖,全班交流匯報。讓學生結合具體情境理解數(shù)的意義。自主建構數(shù)分類的結構框架是學生個性化的體現(xiàn),培養(yǎng)學生的歸納和整理能力。通過在帶箭頭的直線上表示各種數(shù),數(shù)形結合,加深學生對數(shù)的意義的理解和認識,建立數(shù)形集合的概念;幫助學生理解大數(shù)的含義,進一步發(fā)展學生的數(shù)感。通過與他人交流補充,形成較為全面的知識體系圖。教學環(huán)節(jié)三:輔導練習,解決問題教師活動學生活動設計意圖二次備課1.基礎練習2008年8月3日,氣象部門在新疆吐魯番盆地的艾丁湖觀測到的最高氣溫是49.7℃,可記作()℃。1969年2月13日,氣象部門在黑龍江漠河觀測到的最低氣溫是零下52.3℃,可記作()℃。你是怎么想的?說一說正負數(shù)的意義。2.變式練習在五折、0.56、0.55、0.555…、5/9、55.5%這幾個數(shù)中,最大的數(shù)是(),最小的數(shù)是(),()和()大小相等。怎么填?你是怎么想的?3.提升練習比較1/2、2/3、3/4、5/6的大小,你能發(fā)現(xiàn)什么?根據(jù)你發(fā)現(xiàn)的規(guī)律猜一下17/18與19/20哪個數(shù)大?并進行驗證。你是怎么想的?1.基礎練習預設1:零上49.7℃,記作:49.7℃或者+49.7℃。預設2:零下52.3℃,記作:-52.3℃。2.變式練習預設1:最大的數(shù)是0.56。預設2:最小的數(shù)是五折。預設3:0.555…和5/9大小相等。3.提升練習預設1:12<23<34預設2:19/20大1718=17×1018×101920=19×920×9171180所以:1920>鞏固對各類數(shù)的意義的理解,增強數(shù)感。鞏固小數(shù)、分數(shù)、百分數(shù)的互化及小數(shù)的大小比較等知識。學生可以正確比較數(shù)的大小,并找出這類數(shù)的特點,利用轉化的方法從不同角度解決問題。教學環(huán)節(jié)四:引導反思,提升問題教師活動學生活動設計意圖二次備課說一說,這節(jié)課你的收獲。預設1:對數(shù)的認識和分類更加清晰;預設2:使所學知識更系統(tǒng)。對本節(jié)課的相關知識和方法進行歸納匯總和鞏固。七、作業(yè)設計:基礎作業(yè):完成數(shù)的分類練習,在數(shù)軸上標出具體數(shù)的位置。鞏固作業(yè):解決數(shù)的意義理解題,進行分數(shù)、小數(shù)、百分數(shù)的互化練習。提升作業(yè):探索特殊數(shù)的排列規(guī)律,解決需要綜合運用數(shù)系知識的實際問題。八、板書設計:數(shù)的認識整數(shù)正整數(shù)0自然數(shù)負整數(shù)分數(shù)真分數(shù)假分數(shù)九、教學反思與改進:成功之處:不足之處:改進措施:

課題2.數(shù)的運算授課者:課型:新授課時:第1課時一、教材內容分析:系統(tǒng)梳理小學階段所學的運算知識,從四則運算的含義和關系入手,通過具體算式對比整數(shù)、小數(shù)、分數(shù)運算的異同,特別關注0和1參與運算的特殊情況,進而引導學生探索加法與減法、乘法與除法之間的互逆關系,并用字母表示一般規(guī)律;在此基礎上,教材全面回顧五大運算律及其在簡便計算中的應用,引入估算策略解決實際問題,最后通過"小發(fā)明比賽"等案例完整呈現(xiàn)理解題意、分析數(shù)量關系、解答檢驗的實際問題解決步驟,構建了從運算意義到實際應用的完整知識體系。二、學情分析:經(jīng)過六年的學習,學生已經(jīng)積累了豐富的運算經(jīng)驗,能夠熟練進行整數(shù)、小數(shù)、分數(shù)的四則計算,但對分散學習的運算知識缺乏系統(tǒng)整合,特別是對四則運算之間內在關系的理解尚不深入;在運算律應用方面,學生往往能夠記憶公式但缺乏靈活運用的意識,尤其在分數(shù)、小數(shù)混合運算中難以主動識別簡算機會;面對實際問題時,學生容易陷入機械計算而忽視對數(shù)量關系的實質性分析,需要通過系統(tǒng)的思維訓練提升數(shù)學建模能力。三、核心素養(yǎng)目標:①情境與問題:通過"小發(fā)明"比賽作品數(shù)量的實際問題情境,發(fā)現(xiàn)需要運用四則運算解決的問題,提出"如何系統(tǒng)整理運算知識"的探究需求。②知識與技能:掌握四則運算的意義和計算法則,理解運算順序和運算律,能進行整數(shù)、小數(shù)、分數(shù)的混合運算。③思維與表達:能夠用數(shù)學語言解釋運算算理,清晰表述運算順序的選擇依據(jù),運用運算律進行簡便計算。④交流與反思:在小組合作探究運算規(guī)律的過程中,分享不同的解題策略,反思運算知識在解決實際問題中的應用價值。思政元素:在解決小發(fā)明比賽作品計算問題時,培養(yǎng)嚴謹細致的計算習慣和團隊協(xié)作的創(chuàng)新精神。四、教學重難點:教學重點:理解四則運算的意義,掌握運算順序和運算律,能正確進行混合運算。教學難點:靈活運用運算律進行簡便計算,根據(jù)實際問題選擇合適運算方法。五、教學準備:四則運算意義圖示卡片、運算律公式卡片、多媒體課件展示算理。六、學習活動設計:教學環(huán)節(jié)一:情境導入,發(fā)現(xiàn)問題教師活動學生活動設計意圖二次備課看到這幅圖,你有什么想說的?你能提出什么問題?帶著這些問題,這節(jié)課我們就來復習“數(shù)的運算”?!景鍟n題:數(shù)的運算】小組互說,全班交流。學生看到圖后說說自己想知道什么問題?預設1:這是小學階段所學的計算的類型。預設2:什么是加法?什么是減法?什么是乘法?什么是除法?預設3:怎樣進行整數(shù)、小數(shù)、分數(shù)乘除運算?引導學生提出與本節(jié)課相關的問題,初步構建知識框架。教學環(huán)節(jié)二:引導合作,探究問題教師活動學生活動設計意圖二次備課1.口算、筆算、估算。(1)問題一:①小學階段,我們一直都在學習數(shù)的運算,我們學過哪幾種運算?②你能舉例說明每種運算的含義嗎?③什么是加法?什么是減法?什么是乘法?什么是除法?小結:四則運算舉例意義加法3.6+0.513+把兩個數(shù)合成一個數(shù)的運算減法3.6-0.534-已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算乘法17×91.4×516求幾個相同加數(shù)的和的簡便運算9×256×求一個數(shù)的幾分之幾是多少的運算除法3.6÷0.534÷已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算(2)問題二:①整數(shù)和小數(shù)的加、減法計算法則是什么?②分數(shù)加減法的計算法則是什么?③怎樣進行整數(shù)、小數(shù)、分數(shù)乘除法運算?④想一想0與1在四則運算中有哪些特性?(3)問題三:①什么叫估算?一般怎么估一個數(shù)?②加、減、乘、除法的估算各應怎樣進行?2.四則運算(簡算)問題:①四則運算間到底有什么聯(lián)系?②四則運算的順序是什么呢?③在學習四則運算時,我們學過哪些運算律?④這幾種運算律有什么特點呢?⑤減法的性質是什么?除法的性質是什么?3.解決問題出示題目:六年級舉行“小發(fā)明”比賽,六(1)班同學上交32件作品,六(2)班比六(1)班多交1/4,兩個班共交了多少件作品?問題:①題目中已知什么信息?要求的是什么問題?②要求兩個班共交多少件作品,必須先求什么?求它要用到什么條件?③你能畫出線段圖并解答嗎?④解決問題時一般可以分成哪幾個主要步驟?每一步做什么?⑤相應的數(shù)量關系對于解決問題有著重要的作用,我們常見的數(shù)量關系有哪些呢?1.(1)學生小組內交流討論。教師引導學生進行總結。預設1:加法、減法、乘法和除法。預設2:加法是把兩個數(shù)合成一個數(shù)的運算。預設3:減法是已知兩個加數(shù)的和與其中一個加數(shù),求另一個加數(shù)的運算。預設4:乘法是求幾個相同加數(shù)的和的簡便運算。預設5:乘分數(shù)是求一個數(shù)的幾分之幾是多少的運算。預設6:除法是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。(2)學生小組內交流討論。教師引導學生進行總結。預設1:相同數(shù)位對齊。預設2:異分母分數(shù)加減法,先通分,化成同分母分數(shù)后才能直接相加減。預設3:小數(shù)乘法轉化成整數(shù)乘法計算,小數(shù)除法轉化成除數(shù)是整數(shù)的除法計算,分數(shù)除法轉化成分數(shù)乘法計算。預設4:任何數(shù)加0得原數(shù),任何數(shù)減0得原數(shù);0乘任何數(shù)得0,0除以任何數(shù)(0除外)得0,0不能作除數(shù);任何數(shù)乘1得原數(shù),任何數(shù)除以1得原數(shù)。(3)活動三:學生獨立完成后交流估算方法,集體交流訂正。預設1:加、減法估算是把相加、減的各數(shù)最高位后面的尾數(shù)用“四舍五入”法省略,求出近似數(shù),然后用近似數(shù)求和、差。預設2:乘法估算和加、減法估算類似。預設3:除法的估算是先分別求出除數(shù)和被除數(shù)的近似數(shù),把除數(shù)后面的尾數(shù)“四舍五入”。預設4:如果被除數(shù)最高位上的數(shù)比除數(shù)最高位上的數(shù)大,就把被除數(shù)最高位后面的尾數(shù)“四舍五入”;如果被除數(shù)最高位上的數(shù)比除數(shù)最高位上的數(shù)小,就把被除數(shù)左起第二位后面的尾數(shù)“四舍五入”,再求這兩個近似數(shù)的商。2.學生以小組為單位交流討論,全班同學匯報交流。預設1:減法是加法的逆運算,除法是乘法的逆運算,乘法是加法的簡便運算。預設2:同級運算,從左往右計算;不同級運算,先乘除,后加減;有括號的先算括號里面的。預設3:加法交換律、結合律能綜合運用于連加運算,加數(shù)經(jīng)過交換、結合,運算符號不變,還是連加。預設4:乘法交換律、結合律也類似。只有乘法分配律涉及乘加或乘減兩種運算。預設5:減法的性質:a-b-c=a-(b+c)a-(b+c)=a-c-b除法的性質:a÷(b×c)=a÷b÷ca÷(b÷c)=a÷b×c3.學生自主探究,小組內討論,全班反饋交流。預設1:預設2:首先,理解題意,找出已知信息和所求問題。其次,分析數(shù)量關系,確定先算什么,再算什么,最后算什么。再次,確定每一步該怎樣算,列出算式,算出得數(shù)。最后,進行檢驗,寫出答案。預設3:速度×時間=路程單價×數(shù)量=總價工作效率×工作時間=工作總量收入-支出=結余本金×利率×時間=利息引導學生主動參與四則運算意義的整理和復習,使學生系統(tǒng)掌握四則運算的意義;引導學生對四則運算法則進行整理和復習,強化對法則的理解,提高運算能力。通過復習四則混合運算,在掌握運算順序的基礎上,學會在計算過程中根據(jù)運算符號、運算律和性質、數(shù)據(jù)特點以及運算順序之間的聯(lián)系,合理靈活地選擇計算方法,提高運算能力。解決問題,學生要借助線段圖分析題意,數(shù)形結合,更準確地理解題意,快速找到相對應的數(shù)量關系,提取解決問題的主要步驟。形成模型意識,提高應用能力。教學環(huán)節(jié)三:輔導練習,解決問題教師活動學生活動設計意圖二次備課1.基礎練習(1)在一道減法算式中,已知被減數(shù)、減數(shù)與差的和是90,那么被減數(shù)是()。(2)□÷15=12……□,要使余數(shù)最大,被除數(shù)是()。你是怎么想的?說說你的做法。2.變式練習用簡便方法計算。1.25×3.2×2.5怎么做?你是怎么想的?3.提升練習五年級94名師生去游覽動物園,平均每人門票為32元,估一估,2800元購買門票,夠嗎?怎么求?你是怎么想的?1.預設1:是45。因為被減數(shù)是減數(shù)與差的和,也就是90的一半。預設2:194。余數(shù)最大是14,被除數(shù)=除數(shù)×商+余數(shù)。2.預設:1.25×3.2×2.5=1.25×(8×0.4)×2.5=(1.25×8)×(0.4×2.5)=10×1=103.預設1:94×32≈2700(元)夠預設2:94×32≈2820(元)不夠預設3:94×32≈3000(元)不夠預設4:在估算時不要把兩個數(shù)都估成小的數(shù),不利于計算結果的近似。所以預設1是不對的。檢測學生對“數(shù)的運算”的掌握情況,并學會利用數(shù)的運算知識解決實際問題。綜合檢測學生對“簡便運算”的掌握情況,能夠靈活運用運算律。檢測學生對“解決問題”的掌握情況,會靈活運用。教學環(huán)節(jié)四:引導反思,提升問題教師活動學生活動設計意圖二次備課通過學習,說一說你的收獲。預設:復習鞏固了各種運算的方法,使自己對算理的理解更透徹。對本節(jié)課的相關知識和方法進行歸納匯總和鞏固。七、作業(yè)設計:基礎作業(yè):完成基本的四則運算練習,鞏固運算順序和計算法則。鞏固作業(yè):運用運算律進行簡便計算,解決需要多步運算的實際問題。提升作業(yè):解決復雜的混合運算問題,需要靈活運用多種運算律進行簡便計算。八、板書設計:數(shù)的運算六(2)班:32×(1+1/4)=40(件)六(1)班交了32件,所以兩個班一共交了40+32=72(件)答:兩個班共交了72件作品。九、教學反思與改進:成功之處:不足之處:改進措施:

課題3.式與方程授課者:課型:新授課時:第1課時一、教材內容分析:系統(tǒng)梳理小學階段代數(shù)思維的初步建構,教材從“用字母可以簡明表達數(shù)量關系、運算律和計算公式”的核心價值出發(fā),通過分類表格引導學生自主整理字母表示法的多種應用場景,明確字母表示數(shù)的概括性優(yōu)勢;在此基礎上,自然引出方程的概念,通過辨析方程與等式的區(qū)別與聯(lián)系,深化對“含有未知數(shù)的等式”這一本質特征的理解,并借助等式的性質和解方程的實際應用,展現(xiàn)代數(shù)方法解決實際問題的思維過程,完成從算術思維到代數(shù)思維的初步過渡。二、學情分析:學生在前期學習中已接觸過用字母表示運算律和計算公式,具備一定的符號意識基礎,但對字母表示數(shù)的普遍性和優(yōu)越性認識尚淺;對方程的概念容易與等式混淆,對“未知數(shù)”參與運算的代數(shù)思想較為陌生,解方程時往往機械套用步驟而忽視等式性質的原理理解。雖然能解決簡單方程,但自主從實際問題中抽象等量關系并建立方程的能力較弱,需要大量情境化練習來強化代數(shù)建模的思維方式。三、核心素養(yǎng)目標:①情境與問題:通過籃球和足球購買的實際問題情境,發(fā)現(xiàn)數(shù)量關系的不確定性,提出"如何用字母表示數(shù)并建立方程解決問題"的探究需求。②知識與技能:掌握用字母表示數(shù)的方法,理解方程的意義,能正確解方程并運用方程解決實際問題。③思維與表達:能夠用數(shù)學符號表達數(shù)量關系,清晰闡述解方程的步驟,用多種方法驗證方程解的正確性。④交流與反思:在小組合作探究多種解法的過程中,分享不同的解題思路,反思方程在解決復雜問題中的優(yōu)越性。思政元素:在解決購買體育用品預算問題時,培養(yǎng)合理規(guī)劃、精打細算的理財意識和團隊協(xié)作精神。四、教學重難點:教學重點:理解用字母表示數(shù)的方法,掌握解方程的基本步驟,能正確列出方程解決實際問題。教學難點:從實際問題中抽象出等量關系建立方程,靈活運用多種方法解決復雜問題。五、教學準備:實際問題情境卡片、字母表示數(shù)練習材料、多媒體課件展示解題過程。六、學習活動設計:教學環(huán)節(jié)一:情境導入,發(fā)現(xiàn)問題教師活動學生活動設計意圖二次備課今天我們來復習“式與方程”。看到這個課題,你們想到了哪些知識?【板書:式與方程】同桌互說,全班交流。預設:用字母表示數(shù),解方程,用方程解決問題。引導學生提出與本節(jié)課相關的內容,初步構建知識框架。教學環(huán)節(jié)二:引導合作,探究問題教師活動學生活動設計意圖二次備課1.用字母表示數(shù)。(1)說一說。①1、2、3、4、5、6……可以用哪個字母來表示?②4、8、12、16、20、24……用字母可以怎么表示?③4x與x有什么關系呢?④那么“2x+4”可以表示什么呢?獨立完成,小組討論,全班交流。(2)做一做:用字母a來表示一個數(shù),你能根據(jù)不同關系的表述分別寫出另一個數(shù)嗎?①比a多2的數(shù)②比a少2的數(shù)③2個a相加是多少?④2個a相乘是多少?⑤a的2倍⑥a的一半學生獨立完成,匯報結果。⑦2a與a2有什么區(qū)別?⑧用字母表示數(shù)要注意什么?2.方程與解方程如果黑板上的兩個式子:“4x”“2x+4”的結果都是60,那么這兩個式子中的x分別等于多少呢?像這樣的等式數(shù)學上叫作方程。(1)什么叫方程?學生獨立練習解上述兩個方程,完成后校對講評。(2)你能根據(jù)上述兩個方程,編兩道解決問題嗎?小結:一般步驟:①讀懂題意;②設未知數(shù);③找出等量關系;④列出方程;⑤解方程;⑥檢驗得數(shù)。3.復雜的解決問題陳老師為學校買了8個籃球,12個足球,共用去760元。已知籃球每個32元。足球每個多少元?(用方程解答,方法越多越好)獨立思考,小組交流,全班反饋。1.(1)獨立分析題目,理解題意。獨立完成,小組討論,說一說你的想法。交流后全班匯報。預設1:x預設2:4x預設3:4x表示x的4倍。預設4:2x+4表示比x的2倍多4。(2)獨立分析題目,理解題意。獨立完成,小組討論,說一說你的想法。預設1:a+2預設2:a-2預設3:2a預設4:a2預設5:2a預設6:a÷2預設7:2a表示2個a相加;a2表示2個a相乘。預設8:按26個字母順序;數(shù)在前,字母在后;乘號省略;乘法中因數(shù)1省略不寫。2.(1)獨立完成,小組討論,說一說解方程的方法。全班交流。預設1:含有未知數(shù)的等式叫作方程。預設2:4x=60解:4x÷4=60÷4x=15預設3:2x+4=60解:2x+4-4=60-42x=562x÷2=56÷2x=28(2)獨立思考,完成創(chuàng)編解答。小組討論,說一說思路。預設1:小明騎自行車4小時行駛了60千米,平均每小時行駛多少千米?解:設平均每小時行駛x千米。4x=60預設2:甲筐有蘋果60千克,甲筐比乙筐的2倍還多4千克,乙筐有蘋果多少千克?解:設乙筐有蘋果x千克。2x+4=60。3.同學們獨立完成,小組討論,說一說想法。預設1:籃球的總價+足球的總價=兩種球的總價8×32+12x=760預設2:足球的總價相等12x=760-8×32預設3:籃球的總價相等760-12x=8×32預設4:籃球的單價相等(760-12x)÷8=32預設5:籃球的個數(shù)相等(760-12x)÷32=8預設6:足球的個數(shù)相等(760-32×8)÷x=12了解字母與數(shù)之間的關系。通過復習使學生進一步理解用字母表示數(shù)的意義和方法,能用字母表示常見的數(shù)量關系,提高符號意識。了解方程的概念,使學生能應用所學的方程知識來解決實際問題。培養(yǎng)學生學會找等量關系,通過一般步驟解題,提高應用意識。通過分析,找出題目中的數(shù)量關系,用多種方法解題,培養(yǎng)應用意識。教學環(huán)節(jié)三:輔導練習,解決問題教師活動學生活動設計意圖二次備課1.基礎練習(1)已知等邊三角形的周長為c,它的邊長是()。(2)柳樹有a棵,比楊樹多50棵,楊樹有()棵。(3)修路隊x天修2.4千米的公路,平均每天修()千米。(4)果園里有梨樹x棵,蘋果樹的棵數(shù)比梨樹棵數(shù)的2倍多10棵。果園里有蘋果樹和梨樹共()棵。2.變式練習冰箱廠今年生產(chǎn)冰箱78萬臺,比去年產(chǎn)量的2倍還多4萬臺,去年生產(chǎn)冰箱多少萬臺?怎么求?你是怎么想的?獨立完成,全班交流。3.提升練習甲、乙兩地相距345千米,一輛客車和一輛貨車同時從兩地相對開出,客車每小時行駛55千米,貨車每小時行駛60千米,幾小時相遇?怎么求?你是怎么想的?獨立完成,全班交流。1.基礎練習預設1:c÷3預設2:a-50預設3:2.4÷x預設4:3x+102.變式練習預設:解:設去年生產(chǎn)冰箱x萬臺。2x+4=782x+4-4=78-42x=742x÷2=74÷2x=37答:去年生產(chǎn)冰箱37萬臺。3.提升練習預設1:解:設x小時相遇。55x+60x=345預設2:解:設x小時相遇。(55+60)x=345檢測學生對“用字母表示數(shù)”的掌握情況,準確地找出數(shù)量關系并表示出來。培養(yǎng)符號意識。綜合檢測學生對“簡易方程”的掌握情況,準確找出數(shù)量關系,能夠靈活解答。提高應用能力。檢測學生對一題多解的掌握情況,會靈活運用。教學環(huán)節(jié)四:引導反思,提升問題教師活動學生活動設計意圖二次備課通過學習,說一說你的收獲。預設1:明確了解各類型方程的方法。預設2:能熟練地用方程解決實際問題。對本節(jié)課的相關知識和方法進行歸納匯總和鞏固。七、作業(yè)設計:基礎作業(yè):完成用字母表示數(shù)的練習,解簡單的一元一次方程。鞏固作業(yè):解決需要列出方程的實際問題,如"已知總量和部分量求未知量"類問題。提升作業(yè):解決需要多步分析的實際問題,能用多種方法列出方程并比較優(yōu)劣。八、板書設計:式與方程方程:含有未知數(shù)的等式。8×32+12x=760;籃球的總價+足球的總價=兩種球的總價12x=760-8×32;足球的總價相等760-12x=8×32;籃球的總價相等(760-12x)÷8=32;籃球的單價相等(760-12x)-32=8;籃球的個數(shù)相等(760一32×8)÷x=12足球的個數(shù)相等九、教學反思與改進:成功之處:不足之處:改進措施:

課題4.比和比例授課者:課型:新授課時:第1課時一、教材內容分析:通過系統(tǒng)化的表格比較,引導學生從意義、各部分稱謂和基本性質等維度全面梳理比與比例的知識網(wǎng)絡,突出二者在表示數(shù)量關系上的區(qū)別與聯(lián)系;教材進一步設計比、分數(shù)、除法三者關系的對比表格,揭示不同數(shù)學概念間的內在統(tǒng)一性,并通過比的基本性質、分數(shù)基本性質與商不變規(guī)律的關聯(lián)分析,幫助學生構建完整的知識體系;最后要求學生結合生活實例判斷正反比例關系,將抽象概念回歸實際應用,體現(xiàn)了從知識整理到遷移運用的教學設計邏輯。二、學情分析:學生在前期已接觸過比的意義、比例的基本性質等知識點,但對比與比例的界定容易混淆,對三者形式的轉換關系理解多停留在機械記憶層面;雖然能解決基礎的比例問題,但對比值一定與乘積一定的本質區(qū)別把握不準,面對復雜情境時難以自主建立比例模型。通過本節(jié)系統(tǒng)整理,學生需要在辨析中構建認知網(wǎng)絡,在生活實例中深化對比例關系的本質理解。三、核心素養(yǎng)目標:①情境與問題:通過班級男女生人數(shù)比例的實際情境,發(fā)現(xiàn)數(shù)量間的比的關系,提出"如何用比表示數(shù)量關系"和"如何判斷比例關系"的探究問題。②知識與技能:理解比和比例的意義與性質,掌握正比例和反比例的判斷方法,能運用比例知識解決實際問題。③思維與表達:能夠用數(shù)學語言解釋比與比例的區(qū)別與聯(lián)系,清晰表述正反比例的判斷依據(jù)和解決問題思路。④交流與反思:在小組合作探究比例關系的活動中,分享不同的解題策略,反思比例知識在生活中的應用價值。思政元素:在解決生產(chǎn)生活中的比例問題時,培養(yǎng)合理安排、統(tǒng)籌規(guī)劃的意識,形成實事求是的科學態(tài)度。四、教學重難點:教學重點:理解比和比例的意義,掌握正反比例的判斷方法。教學難點:準確區(qū)分正比例和反比例關系,靈活運用比例知識解決復雜實際問題。五、教學準備:班級人數(shù)統(tǒng)計表、零件加工問題情境圖、比例關系判斷練習卡、多媒體課件。六、學習活動設計:教學環(huán)節(jié)一:情境導入,發(fā)現(xiàn)問題教師活動學生活動設計意圖二次備課我們班有幾位男同學?幾位女同學?誰能用“比的知識”說說男、女同學的數(shù)量和本班人數(shù)的關系?你能根據(jù)班里的人數(shù),提出什么問題?今天我們一起來復習“比和比例”?!景鍟罕群捅壤款A設1:能用“比的知識”說出男、女同學的數(shù)量和本班人數(shù)的關系嗎?預設2:你能寫出一個比與1∶5組成比例嗎?預設3:你是如何判定這兩個比成比例的?結合生活實際提出有關問題讓學生自主解決,有利于學生記憶更加深刻。教學環(huán)節(jié)二:引導合作,探究問題教師活動學生活動設計意圖二次備課1.比和比例的意義。問題一:(1)比和比例的意義和性質是什么呢?(2)比和分數(shù)、除法有什么聯(lián)系?又有什么區(qū)別呢?(3)你能用式子表示一下比與分數(shù)、除法的關系嗎?(4)比的基本性質、分數(shù)的基本性質、商不變的規(guī)律之間有什么聯(lián)系?(5)比的基本性質有什么用?比例的基本性質呢?(6)化簡比與求比值容易混淆,它們有什么不同之處?2.比例的應用問題二:張叔叔加工一批零件,5分鐘加工20個。據(jù)此完成下面的表格。時間/分12345加工零件數(shù)/個(1)什么叫作成正(反)比例的量?正(反)比例關系用字母式子怎樣表示?(2)你能舉出成正比例或反比例關系的例子嗎?(3)你會用比例知識解答上面的問題嗎?(4)用比例解答問題的步驟和關鍵是什么?1.以小組為單位,討論一下,全班交流匯報。預設1:預設2:比比的前項比號比的后項比值分數(shù)分子分數(shù)線分母分數(shù)值除法被除數(shù)除號除數(shù)商預設3:a∶b=a/b=a÷b(b≠0)預設4:三者之間是互通的。預設5:應用比的基本性質可以把比化成最簡單的整數(shù)比,應用比例的基本性質可以解比例。預設6:一般方法結果求比值根據(jù)比值的意義,用前項除以后項。是一個商,可以是整數(shù),小數(shù)或分數(shù)化簡比根據(jù)比的基本性質,把比的前項和后項都乘或者除以相同的數(shù)(零除外)。是一個比,它的前項和后項都是整數(shù),并且是互質數(shù)。2.獨立思考,小組討論,說說自己的想法。預設1:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化。如果這兩種量中相對應的兩個數(shù)的比值一定,這兩種量就叫作成正比例的量。預設2:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化。如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫作成反比例的量。預設3:正、反比例關系用字母式子表示為:正比例:y/x=k(一定)(比值一定)反比例:xy=k(一定)(乘積一定)預設4:正比例:小麥每畝產(chǎn)量一定,小麥的總產(chǎn)量與畝數(shù)。反比例:圓柱體積一定,圓柱的底面積與高。預設5:時間/分12345加工零件數(shù)/個48121620預設6:先認真讀題,找出對應關系式,判斷是成正比例還是成反比例,再列比例式解答。通過復習不僅要使知識系統(tǒng)化,還要對知識有新的認識、提高,包括適當?shù)耐卣购脱由?。讓學生能夠掌握比和比例。通過以與生活相關的題為例,讓學生獨立完成,自主參與用比例的知識解決問題的過程,結合自身實踐總結用比例解答應用題的步驟和關鍵,既鍛煉了學生用比例解答應用題的能力,又提高了學生的抽象概括能力。教學環(huán)節(jié)三:輔導練習,解決問題教師活動學生活動設計意圖二次備課1.基礎練習(1)3∶5的前項加上6,要使比值不變,后項應()。(2)1g糖放入100g水中,糖和糖水的比是()。獨立思考,解決問題。怎么求?你是怎么想的?2.變式練習下面各題中的兩種量是否成比例?成什么比例?(1)除數(shù)一定,被除數(shù)和商。(2)圓錐的體積一定,底面積和高。(3)收入一定,支出和結余。3.提升練習5kg花生可榨出2.1kg花生油。照這樣計算,要想榨出16.8kg花生油,需要多少千克花生?(多種方法解題)1.預設1:加上10。加上6,也就是增加2個前項,要使比值不變,后項就要增加2個后項,也就是加上10。也可以說后項擴大為原來的3倍。預設2:1∶101糖水∶1+100=101(g)糖和糖水的比是1∶101。2.預設1:正比例。預設2:反比例。預設3:不成比例。3.預設1:解:設需要xkg花生。5∶2.1=x∶16.8預設2:先求榨出1千克花生油需要多少花生,再求榨出16.8kg花生油需要多少千克花生。5÷2.1×16.8檢測學生對“比和比的基本性質”的掌握情況,并學會利用比的知識解決實際問題。綜合檢測學生對“正、反比例”知識的掌握情況,并且能夠正確地判斷正、反比例。能靈活運用比例知識解決實際問題。教學環(huán)節(jié)四:引導反思,提升問題教師活動學生活動設計意圖二次備課通過學習,說一說你的收獲預設:系統(tǒng)地掌握了比和比例的相關知識。對相關知識和方法進行歸納匯總和鞏固。七、作業(yè)設計:基礎作業(yè):完成基本的比和比例計算練習,判斷簡單數(shù)量關系的比例類型。鞏固作業(yè):解決需要識別比例關系的實際問題,如根據(jù)已知條件判斷是否成比例。提升作業(yè):解決復雜的比例應用問題,需要綜合運用正反比例知識進行多步分析。八、板書設計:比和比例兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化。如果這兩種量中相對應的兩個數(shù)的比值一定,這兩種量就叫作成正比例的量。兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化。如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫作成反比例的量。解:設12分鐘能加工x個零件。5∶20=12∶xx=48答:12分鐘能加工48個零件。九、教學反思與改進:成功之處:不足之處:改進措施:

課題圖形的認識與測量——平面圖形的認識授課者:課型:新授課時:第1課時一、教材內容分析:以圖形分類為切入點,引導學生系統(tǒng)梳理已學過的平面圖形和立體圖形,通過建立分類框架(如將平面圖形細分為三角形、四邊形等,三角形又可按角分為銳角、直角、鈍角三角形)構建圖形知識網(wǎng)絡。教材注重圖形特征的對比分析,設置了一系列關鍵問題引導學生深入思考直線、射線、線段的聯(lián)系與區(qū)別,同一平面內兩條直線的位置關系,角的分類與特性,以及三角形、平行四邊形等基本圖形的性質,最后通過平行四邊形紙片的旋轉操作活動,讓學生在實踐中發(fā)現(xiàn)圖形變換中的不變性質,培養(yǎng)學生的空間觀念和歸納能力。二、學情分析:學生在小學階段已經(jīng)逐步認識了多種平面圖形和立體圖形,具備了一定的圖形辨識能力,但往往對圖形之間的內在聯(lián)系缺乏系統(tǒng)認識,特別是在區(qū)分直線、射線、線段等概念時容易混淆其本質特征;雖然對單個圖形的性質有所了解,但自主構建圖形分類體系的能力較弱,對圖形變換(如旋轉、平移)后的特性關系理解多停留在直觀層面,需要通過具體的操作活動和對比分析來深化對圖形本質屬性的把握,實現(xiàn)從零散認知到系統(tǒng)化理解的過渡。三、核心素養(yǎng)目標:①情境與問題:通過觀察生活中的平面圖形實例,發(fā)現(xiàn)圖形的基本特征,提出"如何系統(tǒng)整理平面圖形的分類和特點"的探究問題。②知識與技能:掌握直線、射線、線段的區(qū)別,理解角的分類方法,能正確區(qū)分三角形、四邊形等平面圖形的特征。③思維與表達:能夠用分類、比較的思維方法分析圖形特征,用數(shù)學語言清晰表述各種圖形的定義和性質。④交流與反思:在小組合作分類整理圖形知識的過程中,分享不同的分類標準,反思圖形知識的內在聯(lián)系。思政元素:在探究圖形特征的過程中,培養(yǎng)嚴謹求實的科學態(tài)度和空間觀念,增強幾何直觀能力。四、教學重難點:教學重點:理解各類平面圖形的本質特征,掌握圖形的分類方法。教學難點:準確區(qū)分相似圖形的特征,理解圖形之間的內在聯(lián)系與區(qū)別。五、教學準備:平面圖形模型、角的分類演示器、圖形特征分類卡片、多媒體課件六、學習活動設計:教學環(huán)節(jié)一:情境導入,發(fā)現(xiàn)問題教師活動學生活動設計意圖二次備課同學們,小學階段我們一起研究過很多平面圖形,你還記得有哪些嗎?小學階段,我們已經(jīng)研究過關于這些平面圖形的哪些知識?【板書:特點、周長、面積】這節(jié)課我們就先從這些平面圖形的特點入手,將它們進行整理和復習?!景鍟浩矫鎴D形的認識】通過復習,我們要進一步認識線段、射線和直線的特征以及它們之間的聯(lián)系與區(qū)別;進一步認識角和角的分類,能比較熟練地用量角器量角和畫角以及平面圖形的特點、分類和聯(lián)系。預設1:長方形、正方形、三角形、平行四邊形、梯形、圓形、扇形。預設2:圖形的特點、周長、面積。開門見山,引出課題。通過小組討論,互相啟發(fā),回憶學過的平面圖形及其本質特征,并將學過的圖形逐級分類、整理。教學環(huán)節(jié)二:引導合作,探究問題教師活動學生活動設計意圖二次備課1.復習直線、射線、線段。問題1:直線、射線和線段有什么區(qū)別?同一平面內的兩條直線有幾種位置關系?教師板書:①②直線、射線、線段的區(qū)別與聯(lián)系:直線沒有端點,可以向兩邊無限延伸不可以度量射線只有一個端點,可以向一邊無限延伸不可以度量線段有兩個端點可以度量③同一平面內兩條直線的位置關系:兩條直線平行2.復習角。問題2:我們學過的角有哪幾種?角的大小和什么有關?教師板書:②角的大小要看兩邊叉開的大小,叉開得越大,角越大。角的大小與角的兩邊所畫的長短沒有關系。學生練習:教材第85頁“做一做”。匯報,訂正。3.復習三角形、四邊形、圓、扇形。問題3:(1)說一說什么是三角形和四邊形?三角形、四邊形和圓、扇形各有什么特點?(2)三角形和四邊形怎么分類?教師板書:1.學生分組討論討論后進行匯報、總結。預設1:用直尺把兩點連接起來,就得到一條線段;把線段一端無限延長,可以得到一條射線;把線段兩端無限延長,可以得到一條直線。預設:2直線、射線、線段的區(qū)別與聯(lián)系。預設3:平行、相交(垂直)和重合。2.學生分組討論,討論后匯報總結。預設1:銳角、直角、鈍角、平角和周角。預設2:角的大小與兩邊叉開的大小有關。3.復習三角形、四邊形、圓、扇形。(1)學生分組議一議,相互交流。(2)學生匯報。(3)學生總結,并說出每種圖形的特點以及三角形和四邊形的分類。(4)學生議一議,寫一寫。學生把寫的過程予以匯報。預設1:由三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫作三角形。三角形的特點:有三條直的邊,有三個角。預設2:有4條直的邊和4個角的封閉圖形我們叫它四邊形。四邊形的特點:有四條直的邊,有四個角。預設3:①圓有無數(shù)條半徑和無數(shù)條直徑,且同圓內圓的半徑長度永遠相同。②圓是軸對稱、中心對稱圖形。③對稱軸是直徑所在的直線。④圓是一條光滑且封閉的曲線,圓上每一點到圓心的距離都相等,到圓心的距離為半徑的點都在圓上。預設4:半徑相等,弧長是圓的周長的一部分。還能用其他的方法表示三角形、四邊形的分類嗎?學生匯報。預設:三角形的分類:按邊分:三條邊都不相等的三角形,叫不等邊三角形;三條邊中有兩條邊相等的三角形,叫等腰三角形。三條邊都相等的三角形,叫作等邊三角形,也叫正三角形。按角分:三個角都是銳角的三角形,叫作銳角三角形。有一個角是直角的三角形,叫作直角三角形。有一個角是鈍角的三角形,叫作鈍角三角形。銳角三角形和鈍角三角形合稱為斜三角形。通過分類、比較、辨析,使學生鞏固直線、射線、線段和各種角以及垂線和平行線的有關知識,進一步認識它們之間的聯(lián)系與區(qū)別,能畫出相應的圖形。對所學平面圖形的知識進行比較和梳理,溝通圖形之間的聯(lián)系和區(qū)別。感悟分類的數(shù)學思想,掌握分類方法,形成知識網(wǎng)絡。教學環(huán)節(jié)三:輔導練習,解決問題教師活動學生活動設計意圖二次備課1.基礎練習(1)學校操場的長是90()。教室的面積是56()。一塊橡皮的體積是8()。一個玻璃冷水壺的容積是2()。(2)在兩條平行線間可以畫()條垂線段,這些垂線段的長度()。(3)一個三角形的三個內角度數(shù)的比是1∶4∶1,這個三角形按邊分是()三角形,按角分是()三角形。2.變式練習。判斷。(1)一個三角形中,只要兩個內角的度數(shù)和小于另一個內角,這個三角形一定是鈍角三角形。()(2)一條直線上的兩點把這條直線分成兩條射線和一條線段,所以射線比直線短。()(3)圓的半徑?jīng)Q定圓的大小,圓心決定圓的位置。()(4)長方形、正方形、圓、等腰梯形都是軸對稱圖形。()(5)圓有無數(shù)條對稱軸,而半圓只有一條對稱軸。()3.提升練習(1)學校傳達室的門壞了,下圖分別是木工師傅修門的4種方案,()種修理方案可以使這扇門最牢固。(2)一個正方形的邊長與一個圓的半徑相等,圓的面積是正方形面積的()倍。A.2B.πC.2πD.41.基礎練習預設:(1)米,平方米,立方厘米,升。(2)無數(shù),相等。(3)等腰,鈍角。2.變式練習預設:(1)√(2)?(3)√(4)√(5)√3.提升練習預設:(1)C加上木條后,原不穩(wěn)定的四邊形中具有了穩(wěn)定的三角形,故這其中蘊含的數(shù)學道理是三角形的穩(wěn)定性。(2)B進行遷移訓練,更好地研究知識間的聯(lián)系,提升解決問題的能力。教學環(huán)節(jié)四:引導反思,提升問題教師活動學生活動設計意圖二次備課通過這節(jié)課的學習,你對圖形的有關知識有了更深刻的認識了吧。說一說,這節(jié)課對圖形有哪些新的了解和認識?預設1:系統(tǒng)地理解了平面圖形的相關概念。預設2:明確了各種圖形之間的聯(lián)系和區(qū)別。對本節(jié)課的相關知識和方法進行歸納匯總和鞏固。七、作業(yè)設計:基礎作業(yè):完成圖形特征的填空題,進行簡單的圖形分類練習。鞏固作業(yè):解決圖形特征判斷題,完成圖形分類的綜合性問題。提升作業(yè):解決需要綜合運用圖形知識的實際問題,如利用圖形性質解決生活中的應用問題。八、板書設計:平面圖形的認識九、教學反思與改進:成功之處:不足之處:改進措施:

課題圖形的認識與測量——平面圖形的周長和面積授課者:課型:新授課時:第1課時一、教材內容分析:教材系統(tǒng)梳理了小學階段所學的平面圖形周長與面積計算方法,通過圖示與字母公式相結合的方式,引導學生回顧長方形、正方形、三角形、平行四邊形、梯形和圓等基本圖形的周長與面積計算公式。教材注重公式的直觀理解與實際應用,不僅要求學生熟練記憶公式,更通過具體圖形(如組合圖形)的測量計算,培養(yǎng)學生靈活運用公式解決實際問題的能力,體現(xiàn)了從知識回顧到綜合應用的遞進式設計思路。二、學情分析:學生在之前的學習中已經(jīng)逐個掌握了各平面圖形的周長與面積計算方法,具備了一定的公式記憶基礎,但在綜合運用時容易混淆不同圖形的公式,特別是在計算組合圖形時難以準確識別基本圖形要素;對公式的理解多停留在機械記憶層面,對公式的推導過程和實際意義的理解仍需深化,需要通過系統(tǒng)的對比練習和實際問題解決來強化知識聯(lián)系,提升空間想象能力和數(shù)學應用意識。三、核心素養(yǎng)目標:①情境與問題:通過回顧已學平面圖形的周長和面積知識,發(fā)現(xiàn)需要系統(tǒng)整理和比較不同圖形計算公式的實際需求,提出"如何建立圖形測量知識體系"的探究問題。②知識與技能:掌握平面圖形周長和面積的含義與區(qū)別,熟練運用各種圖形的計算公式解決實際問題。③思維與表達:能夠用數(shù)學語言清晰闡述周長與面積的本質區(qū)別,解釋各圖形面積公式的推導過程。④交流與反思:在小組合作探究公式推導的過程中,分享不同的解題策略,反思轉化思想在數(shù)學學習中的應用價值。思政元素:在測量與計算過程中培養(yǎng)嚴謹求實的科學態(tài)度,體會"化曲為直"的轉化思想在解決問題中的智慧。四、教學重難點:教學重點:理解周長與面積的概念區(qū)別,掌握基本平面圖形的周長和面積計算方法。教學難點:理解圖形面積公式的推導過程,靈活運用知識解決組合圖形的面積問題。五、教學準備:平面圖形模型、方格紙、計算公式卡片、組合圖形問題圖例、多媒體課件。六、學習活動設計:教學環(huán)節(jié)一:復習導入,發(fā)現(xiàn)問題教師活動學生活動設計意圖二次備課同學們,平面圖形的周長和面積的有關知識對于我們來說已經(jīng)很熟悉了,怎樣系統(tǒng)地認識平面圖形的周長和面積呢?【板書課題:平面圖形的周長和面積】學生小組討論并說說自己的想法。預設1:理解記憶周長和面積的定義。預設2:熟記各圖形的周長和面積公式。預設3:理解各圖形周長和面積之間的關系。開門見山,共同回顧與整合,引出課題。教學環(huán)節(jié)二:引導合作,探究問題教師活動學生活動設計意圖二次備課1.周長和面積的含義。(1)周長。問題一:你能舉例說明什么是平面圖形的周長嗎?【板書:圍成一個圖形所有邊長的總和,叫作這個圖形的周長?!繂栴}二:計量周長采用的是什么單位?你能舉例嗎?為什么采用這樣的單位?【板書:長度單位:厘米、分米、米等?!坑捎谥荛L是計量物體周圍長度的總和,故采用長度單位。(2)面積。問題一:能舉例說明什么是平面圖形的面積嗎?【板書:物體的表面或圍成平面的大小,叫作它們的面積?!繂栴}二:常用的面積單位有哪些?【板書:面積單位:平方米、平方分米、平方厘米等?!浚?)比較平面圖形的周長和面積。半徑為1cm的圓的周長比面積大,這種說法對嗎?【板書:周長和面積的意義不同,單位不同,不能比較大小?!?.周長和面積的計算。(1)長方形的周長和面積。我們學習了六種圖形的周長和面積的計算,想一想,最早學習的是哪個圖形的周長和面積的計算?它的計算公式是什么?教師逐步展示:課件中的長方形,長方形的長與寬的字母,長方形內的方格,周長和面積的計算公式。C=2(a+b)S=ab(2)正方形的周長和面積。正方形與長方形有什么關系?你能否以長方形的周長和面積公式推導正方形的周長和面積公式?(3)平行四邊形的面積。平行四邊形的面積公式是怎樣推導出來的呢?教師用課件展示相關的內容。(4)三角形和梯形的面積。課件展示三角形和梯形,引導學生說一說它們的面積公式及推導過程。問題一:三角形和梯形的面積公式是什么?問題二:誰能說一說推導的過程?老師做出相應的板書。(5)圓的周長和面積。問題一:圓的周長和面積公式是怎樣得出來的?問題二:圓的周長和面積公式是什么?用課件展示相關內容。組織學生議一議,相互交流,探究其中的規(guī)律。1.學生思考,回答。預設1:圍成一個圖形所有邊長的總和,叫作這個圖形的周長。預設2:長度單位有厘米、分米、米等;由于周長是計量物體周圍長度的總和,故采用長度單位。學生思考,小組合作,匯報交流。預設1:物體的表面或圍成平面的大小,叫作它們的面積。預設2:面積單位:平方米、平方分米、平方厘米等?;顒尤侯A設:周長和面積的意義不同,單位不同,不能比較大小。2.活動一:小組內交流,學生匯報。預設:我們最早學習的是長方形的周長和面積的計算。長方形的周長=(長+寬)×2長方形的面積=長×寬活動二:回顧思考,相互討論,匯報周長和面積公式的推導過程。預設:正方形是特殊的長方形,長和寬相等,四條邊都相等。正方形的周長=邊長×4正方形的面積=邊長×邊長C=4aS=a×a=a2活動三:①學生畫一畫,算一算。②學生動手操作,并議一議,相互交流。③學生匯報平行四邊形的面積公式的推導過程。預設:利用割補法把平行四邊形轉化成長方形,進而推導平行四邊形的面積公式。平行四邊形的面積=底×高S=ah活動四:學生思考、回答。預設1:三角形的面積=底×高÷2S三角形=1/2ab梯形的面積=(上底+下底)×高÷2S梯形=1/2(a+b)h預設2:都是把兩個完全相同的圖形拼成一個平行四邊形?;顒游澹簩W生回顧圓的周長和面積公式的推導過程,小組合作議一議,相互交流,學生匯報。預設1:通過實驗得到了周長與直徑的關系。認識了π,得出了圓的周長計算公式:C=πd=2πr。預設2:把圓分割成小塊,拼成長方形、正方形等。推導得出圓的面積公式:S=πr2?;仡櫿碇荛L和面積的含義,加深學生的理解記憶。引導學生回憶整理平面圖形的周長和面積的計算公式及推導過程,再次體會轉化的思想;探索知識間的相互聯(lián)系,構建知識網(wǎng)絡。教學環(huán)節(jié)三:輔導練習,解決問題教師活動學生活動設計意圖二次備課1.基礎練習(1)一個長方形的周長是24cm,寬是5cm,長是()cm,面積是()cm2。(2)如圖,梯形的面積是60cm2,梯形的上底是下底的2/3,空白部分為平行四邊形,涂色部分的面積是()cm2。(3)用一根長10.28m的繩子圍成一個半圓,這個半圓的半徑是()m,面積是()m2。2.變式練習如圖,這個等腰直角三角形的直角邊長10cm,則涂色部分②的面積比涂色部分①的面積大多少?3.提升練習求陰影部分的面積。(1)(2)1.基礎練習(1)長是7cm,面積是35cm2。(2)12cm2(難度較大)(3)半徑是2m,6.28m2。2.變式練習空白部分的面積記作③。(S②+S③)=10×10÷2(S①+S③)=3.14×5×5÷2(S②+S③)-(S①+S③)=S②-S①3.提升練習找到陰影部分與整體圖形面積之間的關系,進行比較計算。(1)梯形面積-1/4圓的面積。(2)圓面積的一半。在解決實際問題中,感受數(shù)學與生活的密切聯(lián)系,加強數(shù)學知識與日常生活的聯(lián)系,發(fā)展學生的空間觀念,培養(yǎng)學生的創(chuàng)新精神。教學環(huán)節(jié)四:引導反思,提升問題教師活動學生活動設計意圖二次備課通過這節(jié)課的學習,你有哪些收獲?預設:熟練地掌握了各種平面圖形求周長和面積的公式以及其他相關的公式。對本節(jié)課的相關知識和方法進行歸納匯總和鞏固。七、作業(yè)設計:基礎作業(yè):直接應用公式計算基本圖形的周長和面積。鞏固作業(yè):解決需要綜合運用公式的實際問題,如計算組合圖形的面積。提升作業(yè):解決復雜的圖形變換問題,需要逆向思考或多次轉化。八、板書設計:平面圖形的周長和面積九、教學反思與改進:成功之處:不足之處:改進措施:

課題圖形的認識與測量——立體圖形的表面積和體積授課者:課型:新授課時:第1課時一、教材內容分析:通過系統(tǒng)的比較表格,引導學生從立體圖形的特征、表面積和體積計算公式等維度,全面梳理長方體、正方體、圓柱和圓錐等基本立體圖形的知識體系。教材注重引導學生思考圖形之間的內在聯(lián)系,如長方體與正方體的異同比較、圓柱與圓錐的轉化關系,以及體積公式的推導過程,并通過“測量鵝卵石體積”的實踐活動,將抽象的公式知識與具體的實物操作相結合,培養(yǎng)學生的空間想象能力和解決實際問題的應用意識。二、學情分析:學生在之前的學習中已經(jīng)分別掌握了各立體圖形的特征和體積計算方法,具備了一定的基礎知識,但對不同圖形之間的內在聯(lián)系缺乏系統(tǒng)認識,容易混淆表面積和體積的概念,特別是在處理組合圖形或不規(guī)則物體的體積問題時往往感到困難。雖然能夠記憶公式,但對公式的推導過程和實際意義的理解仍需深化,需要通過對比分析、實物測量等多樣化的活動,幫助學生在應用中鞏固知識,提升數(shù)學思維能力。三、核心素養(yǎng)目標:①情境與問題:通過觀察立體圖形模型和實際物體,發(fā)現(xiàn)不同立體圖形的特征差異,提出"如何計算立體圖形的表面積和體積"的探究問題。②知識與技能:掌握常見立體圖形的特征,理解表面積和體積的概念,能正確計算長方體、正方體、圓柱和圓錐的表面積與體積。③思維與表達:能夠用數(shù)學語言描述立體圖形的特征,清晰闡述表面積和體積公式的推導過程,解釋公式間的內在聯(lián)系。④交流與反思:在小組合作探究公式推導的活動中,分享不同的解題策略,反思等積變形思想在數(shù)學中的應用價值。思政元素:在探究立體圖形特征和計算過程中,培養(yǎng)嚴謹求實的科學態(tài)度和空間想象能力,體會圖形與生活的密切聯(lián)系。四、教學重難點:教學重點:理解立體圖形的特征,掌握表面積和體積的計算方法。教學難點:理解體積公式的推導過程,靈活運用知識解決組合立體圖形的相關問題。五、教學準備:立體圖形模型、表面積展開圖、實際問題情境圖、多媒體課件展示公式推導過程。六、學習活動設計:教學環(huán)節(jié)一:情境導入,發(fā)現(xiàn)問題教師活動學生活動設計意圖二次備課立體圖形的認識(1)上面這些立體圖形各有什么特點?(2)長方體和正方體有什么相同點和不同點?(3)圓柱與圓錐可以各由什么平面圖形旋轉而成?(4)圓柱與圓錐之間有什么關系?教師板書:名稱圖形相同點不同點面棱頂點面的特點棱長長方體6個12條8個6個面一般都是長方形(也可能有兩個相對的面是正方形),相對的面的面積相等,相對棱長相等每組(有3組,分別叫長、寬、高)互相平行的4條棱相等正方體6個12條8個6個面都是相等的正方形12條棱都相等名稱圖形特征圓柱由三個面圍成,上、下兩底面是面積相等的圓。側面是一個曲面,沿高展開是長方形或正方形。兩個底面之間的距離叫作高,有無數(shù)條高。圓錐由2個面圍成,底面是一個圓。側面是一個曲面,展開后是扇形。頂點到底面圓心的距離叫作高,只有一條高。學生獨立思考問題,小組內討論交流,學生匯報。預設1:長方體的特點是有12條棱,8個頂點,6個面。相對的兩個面相等,相對的棱長度相等。預設2:正方體的12條棱長度都相等,6個面的面積都相等,有8個頂點。預設3:長方體和正方體的相同點是都有8個頂點,12條棱,6個面。不同點是正方體的12條棱的長度都相等,6個面的面積都相等。預設4:圓柱是由長方形以長(或寬)為軸或正方形以邊長為軸旋轉而成的。圓柱的上、下兩個底面是大小相等的圓,側面是一個曲面,有無數(shù)條高。預設5:圓錐是由直角三角形以直角邊為軸旋轉而成的。圓錐的底面是一個圓,側面是一個曲面,只有一條高。預設6:圓柱的體積是與其等底等高的圓錐的體積的3倍?;仡櫿砹Ⅲw圖形的相關知識,明確長方體、正方體、圓柱和圓錐等立體圖形的特征,能從整體上把握這些圖形的特征及其相互關系。教學環(huán)節(jié)二:引導合作,探究問題教師活動學生活動設計意圖二次備課1.復習表面積的計算。(1)復習表面積的定義。問題:什么是立體圖形的表面積?(2)復習長方體和正方體的表面積。問題:長方體和正方體的表面積是哪些面的面積之和?表面積公式分別是什么?(3)復習圓柱的表面積。問題:①圓柱的表面積是哪些面的面積之和?②圓柱的側面沿高展開是什么形狀?③側面展開的長方形的長、寬與圓柱有什么關系?④圓柱的側面積怎樣計算?什么樣的圓柱沿高展開的側面是正方形?⑤圓柱的表面積公式是什么?(4)歸納表面積的計算方法。S長=(a×b+a×h+b×h)×2S正=6a2S圓柱=2πrh+2πr22.立體圖形體積的計算。(1)下面我們一起復習有關長方體、正方體和圓柱、圓錐的體積計算。它們的公式分別是什么?這些體積計算公式中哪一個是其他幾個的基礎?這幾個立體圖形的體積計算公式是怎么推導出來的?教師隨著在每個立體圖形后面板書相應的體積公式。(課件演示推導過程)(2)要求學生用字母表示出立體圖形的體積計算公式。(3)歸納立體圖形的體積公式。比較一下正方體、長方體和圓柱的體積計算公式,它們有什么相同的地方?1.小組合作,學生拿出立體圖形的模型,一邊用手摸,一邊說出每個立體圓形的表面積包括哪幾個部分的面積?預設:一個立體圖形所有面的面積總和叫作它的表面積?;顒佣簭土曢L方體和正方體的表面積。預設:長方體的表面積就是上下、左右、前后六個面的面積總和,并且相對面的面積是相等的。正方體的表面積就是六個相等面的面積總和。長方體表面積=(長×寬+長×高+寬×高)×2正方體的表面積=棱長×棱長×6活動三:復習圓柱的表面積。預設1:圓柱的表面積就是側面積加上、下底面面積。預設2:圓柱的側面沿高展開是長方形。預設3:側面展開的長方形的長相當于圓柱的底面周長(或高),寬相當于圓柱的高(或底面周長)。預設4:圓柱的側面積=底面周長×高。圓柱的底面周長和高相等時,沿高展開的側面是正方形。正方形的邊長相當于底面周長或高。預設5:圓柱的表面積=側面積+2個底面面積?;顒铀模簹w納表面積的計算方法。①學生根據(jù)立體圖形的表面積是圍成立體圖形所有面的面積,在教材上用字母表示出計算每個圖形表面積的方法。②小組內歸納出的表面積計算方法,說一說是怎樣想的?2.學生圍繞目標自主復習。小組交流討論,學生整理匯報。預設1:長方體的體積公式通過擺體積為1cm3的小正方體推導出,長方體的體積=長×寬×高,即V=a×b×h。預設2:正方體是特殊的長方體,所以正方體的體積=棱長×棱長×棱長,即V=a3。預設3:把圓柱體沿高切開分成若干等分。把切開的等分分成相等的兩部分拼成一個近似的長方體。長方體與圓柱體的體積、底面積、高都分別相等。因為長方體體積V=Sh,所以圓柱體體積V=Sh=πr2h。預設4:利用實驗的方法來探究圓錐體積的計算方法。圓柱的體積等于和它等底等高的圓錐體積的3倍或圓錐的體積是和它等底等高的圓柱體積的1/3?;顒佣簩W生在教材例5中用字母表示出立體圖形的體積計算公式。邊寫邊思考這些體積公式是怎樣推導出來的。活動三:歸納立體圖形的體積公式。比較一下正方體、長方體和圓柱的體積計算公式,它們有什么相同的地方?預設1:像長方體、正方體和圓柱這三種立體圖形,它們都有一個共同的特點,就是上下的兩個底面都是一樣的,體積都是底面積乘高,即V=Sh。預設2:底面積和高都分別相等的圓柱、正方體、長方體,它們的體積一定相等。復習表面積計算的相關內容,進一步熟悉立體圖形表面積的內容。復習與立體圖形體積的計算相關的內容,進一步熟悉立體圖形的體積的內涵。教學環(huán)節(jié)三:輔導練習,解決問題教師活動學生活動設計意圖二次備課1.基礎練習(1)一個正方體的棱長總和是48cm,它的表面積是()cm2,體積是()cm3。(2)如圖,以長方形AB邊所在的直線為軸旋轉一周,得到一個(),它的體積是()。2.變式練習(1)建造一個長50m、寬30m、深2m的游泳池。①如果在池底和四周貼上邊長為4dm的正方形瓷磚,那么至少需要多少塊?②如果注入2700m3的水,那么水深多少米?(2)一種兒童玩具——陀螺(如下圖),上面是圓柱形,下面是圓錐形,經(jīng)過測試,只有當圓柱底面直徑為3cm,高為4cm,圓錐的高是圓柱高的3/4時,這個陀螺才能旋轉得又穩(wěn)又快,這個陀螺的體積是多大?3.提升練習有一個長方形容器,里面裝有水,測得水面高度為4.4cm(如圖1),為了得到冰水,(冰水可用于水果保鮮),媽媽把一根圓柱形的冰柱垂直放入其中,水面升高至5.5cm,這時剛好有1/3冰柱浸沒在水中(如圖2)。(1)求冰柱的體積。(2)求該冰柱完全融化時容器內的水面高度。(已知:冰融化成水后體積會減少原來的1/11)(單位:cm)解題思路:(1)原來水柱只有4.4厘米,因為“水面上升到5.5厘米處”說明冰柱插入水中水面上升了(5.5-4.4)厘米,用底面積乘以上升的水的高度1.1厘米,就是1/3冰柱的體積,再求整個冰柱的體積即可。(2)根據(jù)“冰化成水”,體積減少原來的1/11,是把冰的體積看作單位“1”,則水是原來冰柱的(1-1/11),再根據(jù)求一個數(shù)的幾分之幾是多少用乘法求出融化后水的體積,然后除以容器的底面積,即可求出全部融化后增加的高度,進而求出冰柱完全融化時容器內的水面高度;求出1/3冰柱垂直放入長方體的容器中,使水的高度上升了:5.5-4.4=1.1(厘米),所以根據(jù)整個冰柱化成冰后的體積與上升的高度進行計算即可。1.基礎練習活動:小組內交流,再指名說一說。預設:(1)9664(2)圓柱45πcm22.變式練習預設:(1)①先求五個面的面積50×30+50×2×2+30×2×2=1820(m2)4×4=16(dm2)16dm2=0.16m2②1820÷0.16(2)3.14×(3÷2)2×4+1/3×3.14×(3÷2)2×4×3/4=3.14×2.25×4+3.14×2.25=28.26+7.065=35.325(cm3)答:這個陀螺的體積是35.325cm3。3.提升練習(1)10×10×(5.5-4.4)÷1/3=100×1.1×3=110×3=330(cm3)答:冰柱的體積是330cm3。(2)330×(1-1/11)=300(cm3)300÷(10×10)+4.4=7.4(cm)答:該冰柱完全融化時容器內的水面高度是7.4厘米。會靈活運用立體圖形的表面積和體積的計算方法解決實際問題。教學環(huán)節(jié)四:引導反思,提升問題教師活動學生活動設計意圖二次備課通過這節(jié)課的學習,你對立體圖形的表面積和體積有了哪些更深刻的認識和了解?想一想,說一說。預設:熟練掌握了各種立體圖形的表面積和體積公式。對本節(jié)課的相關知識和方法進行歸納匯總和鞏固。七、作業(yè)設計:基礎作業(yè):直接應用公式計算基本立體圖形的表面積和體積。鞏固作業(yè):解決需要綜合分析的實際問題,如計算組合圖形的體積或表面積。提升作業(yè):解決復雜的等積變形問題,需要逆向思考或進行多步推理。八、板書設計:立體圖形的表面積和體積立體圖形表面積計算公式體積計算公式S=2(ab+ah+bh)V=abhV=底面積×高S=6a2V=a3S=2πr2+2πrhV=πr2h——V=13πr2九、教學反思與改進:成功之處:不足之處:改進措施:

課題4.圖形的運動授課者:課型:新授課時:第1課時一、教材內容分析:系統(tǒng)梳理小學階段所學的圖形變換知識,重點引導學生比較不同運動方式對圖形的影響。教材通過分類歸納,明確平移、旋轉和軸對稱這三種運動不改變圖形的形狀和大小,僅改變其位置;而圖形的放大與縮小則只改變圖形的大小,不改變其形狀。在掌握基本運動特征的基礎上,教材進一步引導學生利用圖形的運動進行圖案設計,將抽象的數(shù)學知識轉化為具體的創(chuàng)作實踐,培養(yǎng)學生的空間觀念和審美能力。二、學情分析:學生在之前的學習中已經(jīng)初步接觸了平移、旋轉、軸對稱等圖形運動方式,具備一定的直觀感知基礎,但往往對各類運動的本質特征區(qū)分不清,特別是對“不改變形狀和大小”與“只改變大小”這兩類運動的理解容易混淆。雖然能夠識別單一運動,但在綜合運用多種運動進行圖案設計時,學生的空間想象能力和創(chuàng)造性思維仍需引導和提升。通過本節(jié)系統(tǒng)梳理和實踐操作,有助于學生將零散的知識整合為完整的認知體系。三、核心素養(yǎng)目標:①情境與問題:通過觀察城市廣場圖案的真實情境,發(fā)現(xiàn)圖形運動在生活中的應用,提出“圖形運動有哪些類型及特征”的探究問題。②知識與技能:掌握軸對稱、旋轉、平移、放大縮小等圖形運動的基本概念和操作方法,能正

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論