版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽合肥市華泰高中2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線的傾斜角是()A. B.C. D.2.如圖,在棱長(zhǎng)為2的正方體中,點(diǎn)P在截面上(含邊界),則線段的最小值等于()A. B.C. D.3.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.4.在等差數(shù)列中,若,,則公差d=()A. B.C.3 D.-35.已知向量,,且與互相平行,則的值為()A.-2 B.C. D.6.將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),則點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為()A. B.C. D.7.已知拋物線的焦點(diǎn)恰為雙曲線的一個(gè)頂點(diǎn),的另一頂點(diǎn)為,與在第一象限內(nèi)的交點(diǎn)為,若,則直線的斜率為()A. B.C. D.8.在正方體中,下列幾種說(shuō)法不正確的是A. B.B1C與BD所成的角為60°C.二面角的平面角為 D.與平面ABCD所成的角為9.,,,,設(shè),則下列判斷中正確的是()A. B.C. D.10.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個(gè)高階等差數(shù)列,其前6項(xiàng)分別為1,5,11,21,37,61,則該數(shù)列的第7項(xiàng)為()A.95 B.131C.139 D.14111.在等差數(shù)列中,若,則()A.5 B.6C.7 D.812.觀察下列各式:,,,,,可以得出的一般結(jié)論是A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.已知過(guò)橢圓上的動(dòng)點(diǎn)作圓(為圓心):的兩條切線,切點(diǎn)分別為,若的最小值為,則橢圓的離心率為_(kāi)_____14.已知等差數(shù)列滿足,,,則公差______15.設(shè)函數(shù),若存在實(shí)數(shù)使得成立,則的取值范圍是__________.16.若,且,則的最小值是____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),橢圓C的離心率為.(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;(Ⅱ)從橢圓C在第一象限內(nèi)的部分上取橫坐標(biāo)為2的點(diǎn)P,若橢圓C上有兩個(gè)點(diǎn)A,B使得的平分線垂直于坐標(biāo)軸,且點(diǎn)B與點(diǎn)A的橫坐標(biāo)之差為,求直線AP的方程.18.(12分)如圖,四棱柱的底面為正方形,平面,,,點(diǎn)在上,且.(1)求證:;(2)求直線與平面所成角的正弦值;(3)求平面與平面夾角的余弦值.19.(12分)已知是等差數(shù)列,是等比數(shù)列,且,,,.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.20.(12分)如圖,在四棱錐中,底面是平行四邊形,,M,N分別為的中點(diǎn),.(1)證明:;(2)求直線與平面所成角的正弦值.21.(12分)已知圓與直線(1)若,直線與圓相交與,求弦長(zhǎng)(2)若直線與圓無(wú)公共點(diǎn)求的取值范圍22.(10分)如圖,在直三棱柱中,平面?zhèn)让?,?(1)求證:;(2)若直線與平面所成的角為,請(qǐng)問(wèn)在線段上是否存在點(diǎn),使得二面角的大小為,若存在請(qǐng)求出的位置,不存在請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】將直線方程化為斜截式,由此確定斜率;根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】設(shè)直線的傾斜角為,則,由得:,則斜率,.故選:A.2、B【解析】根據(jù)體積法求得到平面的距離即可得【詳解】由題意的最小值就是到平面的距離正方體棱長(zhǎng)為2,則,,設(shè)到平面的距離為,由得,解得故選:B3、C【解析】根據(jù)拋物線方程求出焦點(diǎn)坐標(biāo)與準(zhǔn)線方程,即可得解;【詳解】解:因?yàn)閽佄锞€方程為,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線的方程為,所以焦點(diǎn)到準(zhǔn)線的距離為;故選:C4、C【解析】由等差數(shù)列的通項(xiàng)公式計(jì)算【詳解】因?yàn)?,,所?故選:C【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,利用等差數(shù)列通項(xiàng)公式可得,5、A【解析】應(yīng)用空間向量坐標(biāo)的線性運(yùn)算求、的坐標(biāo),根據(jù)空間向量平行有,即可求的值.【詳解】由題設(shè),,,∵與互相平行,∴且,則,可得.故選:A6、B【解析】基本事件總數(shù),再利用列舉法求出點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件的個(gè)數(shù),由此能求出點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù)之和,基本事件總數(shù),點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件有:,,,,,,,,共8個(gè),則點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為故選:B7、D【解析】根據(jù)題意,列出的方程組,解得,再利用斜率公式即可求得結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn),由題可知;又點(diǎn)在拋物線上,故可得;又,聯(lián)立方程組可得,整理得,解得(舍)或,此時(shí),又,故直線的斜率為.故選:D.8、D【解析】在正方體中,利用線面關(guān)系逐一判斷即可.【詳解】解:對(duì)于A,連接AC,則AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正確;對(duì)于B,∵B1C∥D,即B1C與BD所成的角為∠DB,連接△DB為等邊三角形,∴B1C與BD所成的角為60°,故B正確;對(duì)于C,∵BC⊥平面A1ABB1,A1B?平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B?平面A1BC,AB?平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正確;對(duì)于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1與平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D錯(cuò)誤故選D【點(diǎn)睛】本題考查了線面的空間位置關(guān)系及空間角,做出圖形分析是關(guān)鍵,考查推理能力與空間想象能力9、D【解析】通過(guò)湊配構(gòu)造的方式,構(gòu)造出新式子,且可以化簡(jiǎn)為整數(shù),然后利用放縮思想得到S的范圍.【詳解】解:,,,,,;,.故選:D10、A【解析】利用已知條件,推出數(shù)列的差數(shù)的差組成的數(shù)列是等差數(shù)列,轉(zhuǎn)化求解即可【詳解】由題意可知,1,5,11,21,37,61,……,的差的數(shù)列為4,6,10,16,24,……,則這個(gè)數(shù)列的差組成的數(shù)列為:2,4,6,8,……,是一個(gè)等差數(shù)列,設(shè)原數(shù)列的第7項(xiàng)為,則,解得,所以原數(shù)列的第7項(xiàng)為95,故選:A11、B【解析】由得出.【詳解】由可得,故選:B12、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以歸納:左邊每一個(gè)式子均有2n-1項(xiàng),且第一項(xiàng)為n,則最后一項(xiàng)為3n-2右邊均為2n-1的平方故選C點(diǎn)睛:歸納推理的一般步驟是:(1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想)二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由橢圓方程和圓的方程可確定橢圓焦點(diǎn)、圓心和半徑;當(dāng)最小時(shí),可知,此時(shí);根據(jù)橢圓性質(zhì)知,解方程可求得,進(jìn)而得到離心率.【詳解】由橢圓方程知其右焦點(diǎn)為;由圓的方程知:圓心為,半徑為;當(dāng)最小時(shí),則最小,即,此時(shí)最小;此時(shí),;為橢圓右頂點(diǎn)時(shí),,解得:,橢圓的離心率.故答案為:.14、2【解析】根據(jù)等差數(shù)列性質(zhì)求得,再根據(jù)題意列出相關(guān)的方程組,解得答案.【詳解】為等差數(shù)列,故由可得:,即,故,故,所以,解得,故答案為:215、【解析】將變形為,令,,分別研究其單調(diào)性及值域,使問(wèn)題轉(zhuǎn)化為即可.【詳解】由題,,令,則,由,得,由,得,所以在遞減,在遞增,所以,令,則,由,得,由,得,所以在遞增,在遞減,所以,若存在實(shí)數(shù)使得成立,即存在實(shí)數(shù)使得成立,即存在實(shí)數(shù)使得恒成立所以,即,解得,所以取值范圍為.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解題關(guān)鍵是將所求問(wèn)題轉(zhuǎn)為存在實(shí)數(shù)使得恒成立,結(jié)合的值域進(jìn)一步轉(zhuǎn)化為存在實(shí)數(shù)使得恒成立,再只需即可.16、【解析】應(yīng)用基本不等式“1”的代換求a+4b的最小值即可.【詳解】由,有,則,當(dāng)且僅當(dāng),且,即時(shí)等號(hào)成立,∴最小值為.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由題意可得關(guān)于參數(shù)的方程,解之即可得到結(jié)果;(Ⅱ)設(shè)直線AP的斜率為k,聯(lián)立方程結(jié)合韋達(dá)定理可得A點(diǎn)坐標(biāo),同理可得B點(diǎn)坐標(biāo),結(jié)合橫坐標(biāo)之差為,可得直線方程.【詳解】(Ⅰ)由拋物線方程可得焦點(diǎn)為,則橢圓C的一個(gè)頂點(diǎn)為,即.由,解得.∴橢圓C的標(biāo)準(zhǔn)方程是;(Ⅱ)由題可知點(diǎn),設(shè)直線AP的斜率為k,由題意知,直線BP的斜率為,設(shè),,直線AP的方程為,即.聯(lián)立方程組消去y得.∵P,A為直線AP與橢圓C的交點(diǎn),∴,即.把換成,得.∴,解得,當(dāng)時(shí),直線BP的方程為,經(jīng)驗(yàn)證與橢圓C相切,不符合題意;當(dāng)時(shí),直線BP的方程為,符合題意.∴直線AP得方程為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:兩條直線關(guān)于直線對(duì)稱,兩直線的傾斜角互補(bǔ),斜率互為相反數(shù).18、(1)證明見(jiàn)解析(2)(3)【解析】(1)以為原點(diǎn),所在的直線為軸的正方向建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量可得,即平面,再由線面垂直的性質(zhì)可得答案;(2)設(shè)直線與平面所成角的為,可得答案;(3)由二面角的向量求法可得答案.【小問(wèn)1詳解】以為原點(diǎn),所在的直線為軸的正方向建立空間直角坐標(biāo)系,則,,,,,所以,,,設(shè)平面的一個(gè)法向量為,所以,即,令,則,所以,所以,所以平面,平面,所以.【小問(wèn)2詳解】,所以,由(1)平面的一個(gè)法向量為,設(shè)直線與平面所成角的為,所以直線與平面所成角的正弦值.【小問(wèn)3詳解】由已知為平面的一個(gè)法向量,且,由(1)平面的一個(gè)法向量為,所以,由圖可得平面與平面夾角的余弦值為.19、(1)(2)【解析】(1)設(shè)是公差為d的等差數(shù)列,是公比為q的等比數(shù)列,運(yùn)用通項(xiàng)公式可得,,進(jìn)而得到所求通項(xiàng)公式;(2)求得,再由數(shù)列的求和方法:分組求和,運(yùn)用等差數(shù)列和等比數(shù)列的求和公式,計(jì)算即可得到所求和.【小問(wèn)1詳解】解:(1)設(shè)是公差為d的等差數(shù)列,是公比為q的等比數(shù)列,由,,可得,;即有,,則,則;【小問(wèn)2詳解】解:,則數(shù)列的前n項(xiàng)和為.20、(1)證明見(jiàn)解析;(2)【解析】(1)要證,可證,由題意可得,,易證,從而平面,即有,從而得證;(2)取中點(diǎn),根據(jù)題意可知,兩兩垂直,所以以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,再分別求出向量和平面的一個(gè)法向量,即可根據(jù)線面角的向量公式求出【詳解】(1)中,,,,由余弦定理可得,所以,.由題意且,平面,而平面,所以,又,所以(2)由,,而與相交,所以平面,因?yàn)?,所以,取中點(diǎn),連接,則兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),如圖所示,建立空間直角坐標(biāo)系,則,又為中點(diǎn),所以.由(1)得平面,所以平面的一個(gè)法向量從而直線與平面所成角的正弦值為【點(diǎn)睛】本題第一問(wèn)主要考查線面垂直的相互轉(zhuǎn)化,要證明,可以考慮,題中與有垂直關(guān)系直線較多,易證平面,從而使問(wèn)題得以解決;第二問(wèn)思路直接,由第一問(wèn)的垂直關(guān)系可以建立空間直角坐標(biāo)系,根據(jù)線面角的向量公式即可計(jì)算得出21、(1);(2)或.【解析】(1)求出圓心到直線的距離,再由垂徑定理求弦長(zhǎng);(2)由圓心到直線的距離大于半徑列式求解的范圍【詳解】解:(1)圓,圓心為,半徑,圓心到直線的距離為,弦長(zhǎng)(2)若直線與圓無(wú)公共點(diǎn),則圓心到直線的距離大于半徑解得或22、(1)證明見(jiàn)解析(2)存在,點(diǎn)E為線段中點(diǎn)【解析】(1)通過(guò)作輔助線結(jié)合面面垂直的性質(zhì)證明側(cè)面,從而證明結(jié)論;(2)建立空間直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),再求相關(guān)的向量坐標(biāo),求平面的法向量,利用向量的夾角公式求得答案.【小問(wèn)1詳
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鐵氧體材料燒成工崗前規(guī)章制度考核試卷含答案
- 國(guó)際銷售服務(wù)協(xié)議書(shū)模板
- 水生產(chǎn)處理工安全規(guī)程知識(shí)考核試卷含答案
- 碳五碳六異構(gòu)化裝置操作工崗前深度考核試卷含答案
- 拆卸免責(zé)協(xié)議書(shū)
- 父親叫停兒子轉(zhuǎn)會(huì)協(xié)議書(shū)
- 家禽屠宰加工工安全規(guī)程競(jìng)賽考核試卷含答案
- 衛(wèi)星通信機(jī)務(wù)員崗前技術(shù)落地考核試卷含答案
- 石棉制品工崗前流程考核試卷含答案
- 永吉縣公益性崗位人員招聘考試真題2025
- 浙教版勞動(dòng)二年級(jí)上冊(cè)全冊(cè)教案
- 《物聯(lián)網(wǎng)工程項(xiàng)目管理》課程標(biāo)準(zhǔn)
- 危險(xiǎn)源辨識(shí)、風(fēng)險(xiǎn)評(píng)價(jià)、風(fēng)險(xiǎn)控制措施清單-05變電站工程5
- 物業(yè)公司財(cái)務(wù)預(yù)算管理制度
- 2023年副主任醫(yī)師(副高)-推拿學(xué)(副高)考試歷年真題摘選帶答案
- 朱子治家格言(朱子家訓(xùn))課件
- 20S517 排水管道出水口
- 初中一年級(jí)(7年級(jí))上學(xué)期生物部分單元知識(shí)點(diǎn)
- 王小利小品《畫(huà)里有話》劇本臺(tái)詞手稿
- 長(zhǎng)興中學(xué)提前招生試卷
- 2022年基礎(chǔ)教育國(guó)家級(jí)教學(xué)成果獎(jiǎng)評(píng)審工作安排
評(píng)論
0/150
提交評(píng)論