平頂山市重點中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第1頁
平頂山市重點中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第2頁
平頂山市重點中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第3頁
平頂山市重點中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第4頁
平頂山市重點中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

平頂山市重點中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是空間的一個基底,若,,若,則()A. B.C.3 D.2.19世紀法國著名數(shù)學家加斯帕爾·蒙日,創(chuàng)立了畫法幾何學,推動了空間幾何學的獨立發(fā)展,提出了著名的蒙日圓定理:橢圓的兩條切線互相垂直,則切線的交點位于一個與橢圓同心的圓上,稱為蒙日圓,且該圓的半徑等于橢圓長半軸長與短半軸長的平方和的算術平方根.若圓與橢圓的蒙日圓有且僅有一個公共點,則b的值為()A. B.C. D.3.考試停課復習期間,小王同學計劃將一天中的7節(jié)課全部用來復習4門不同的考試科目,每門科目復習1或2節(jié)課,則不同的復習安排方法有()種A.360 B.630C.2520 D.151204.在等差數(shù)列中,已知,則數(shù)列的前6項之和為()A.12 B.32C.36 D.725.如圖是函數(shù)的導函數(shù)的圖象,下列說法正確的是()A.函數(shù)在上是增函數(shù)B.函數(shù)在上是減函數(shù)C.是函數(shù)的極小值點D.是函數(shù)的極大值點6.命題“,”的否定形式是()A., B.,C., D.,7.在某次賽車中,名參賽選手的成績(單位:)全部介于到之間(包括和),將比賽成績分為五組:第一組,第二組,···,第五組,其頻率分布直方圖如圖所示.若成績在內(nèi)的選手可獲獎,則這名選手中獲獎的人數(shù)為A. B.C. D.8.已知在平面直角坐標系中,圓的方程為,直線過點且與直線垂直.若直線與圓交于兩點,則的面積為A.1 B.C.2 D.9.如圖,在直三棱柱中,D為棱的中點,,,,則異面直線CD與所成角的余弦值為()A. B.C. D.10.已知雙曲線的左、右焦點分別為,過點的直線與圓相切于點,交雙曲線的右支于點,且點是線段的中點,則雙曲線的漸近線方程為()A. B.C. D.11.圓與直線的位置關系為()A.相切 B.相離C.相交 D.無法確定12.如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切).已知環(huán)湖彎曲路段為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.正三棱柱的底面邊長為2,側棱長為,則與側面所成角的正弦值為______14.若球的大圓的面積為,則該球的表面積為___________.15.過點作斜率為的直線與橢圓相交于、兩個不同點,若是的中點,則該橢圓的離心率___________.16.命題“若實數(shù)a,b滿足,則且”是_______命題(填“真”或“假”).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的一個焦點坐標為,離心率.(1)求橢圓的方程;(2)設為坐標原點,橢圓與直線相交于兩個不同的點A、B,線段AB的中點為M.若直線OM的斜率為-1,求線段AB的長;(3)如圖,設橢圓上一點R的橫坐標為1(R在第一象限),過R作兩條不重合直線分別與橢圓交于P、Q兩點、若直線PR與QR的傾斜角互補,求直線PQ的斜率的所有可能值組成的集合.18.(12分)已知數(shù)列滿足,().(1)證明:數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;(2)數(shù)列滿足:(),求數(shù)列的前項和.19.(12分)(1)已知命題p:;命題q:,若“”為真命題,求x的取值范圍(2)設命題p:;命題q:,若是的充分不必要條件,求實數(shù)a的取值范圍20.(12分)如圖,在長方體中,,點E在棱上運動(1)證明:;(2)當E為棱的中點時,求直線與平面所成角的正弦值;(3)等于何值時,二面角的大小為?21.(12分)如圖所示,已知定點為曲線上一個動點,求線段中點的軌跡方程.22.(10分)橢圓的左右焦點分別為,,焦距為,為原點.橢圓上任意一點到,距離之和為.(1)求橢圓的標準方程;(2)過點的斜率為2的直線交橢圓于、兩點,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由,可得存在實數(shù),使,然后將代入化簡可求得結果【詳解】,,因,所以存在實數(shù),使,所以,所以,所以,得,,所以,故選:C2、B【解析】由題意求出蒙日圓方程,再由兩圓只有一個交點可知兩圓相切,從而列方程可求出b的值【詳解】由題意可得橢圓的蒙日圓的半徑,所以蒙日圓方程為,因為圓與橢圓的蒙日圓有且僅有一個公共點,所以兩圓相切,所以,解得,故選:B3、C【解析】,先安排復習節(jié)的科目,然后安排其余科目,由此計算出不同的復習安排方法數(shù).【詳解】第步,門科目選門,安排節(jié)課,方法數(shù)有種,第步,安排其余科目,每門科目節(jié)課,方法數(shù)有種,所以不同的復習安排方法有種.故選:C4、C【解析】利用等差數(shù)列的求和公式結合角標和定理即可求解.【詳解】解:等差數(shù)列中,所以等差數(shù)列的前6項之和為:故選:C.5、A【解析】根據(jù)圖象,結合導函數(shù)的正負性、極值的定義逐一判斷即可.【詳解】由圖象可知,當時,;當時,,在上單調(diào)遞增,在上單調(diào)遞減,可知B錯誤,A正確;是極大值點,沒有極小值,和不是函數(shù)的極值點,可知C,D錯誤故選:A6、A【解析】特稱命題的否定是全稱命題【詳解】的否定形式是故選:A7、A【解析】先根據(jù)頻率分布直方圖確定成績在內(nèi)的頻率,進而可求出結果.【詳解】由題意可得:成績在內(nèi)的頻率為,又本次賽車中,共名參賽選手,所以,這名選手中獲獎的人數(shù)為.故選A【點睛】本題主要考查頻率分布直方圖,會根據(jù)頻率分布直方圖求頻率即可,屬于??碱}型.8、A【解析】∵圓的方程為,即,∴圓的圓心為,半徑為2.∵直線過點且與直線垂直∴直線.∴圓心到直線的距離.∴直線被圓截得的弦長,又∵坐標原點到的距離為,∴的面積為.考點:1、直線與圓的位置關系;2、三角形的面積公式.9、A【解析】以C為坐標原點,分別以,,方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標系.運用異面直線的空間向量求解方法,可求得答案.【詳解】解:以C為坐標原點,分別以,,的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標系.由已知可得,,,,則,,所以.又因為異面直線所成的角的范圍為,所以異面直線與所成角的余弦值為.故選:A.10、D【解析】焦點三角形問題,可結合為三角形的中位線,判斷:焦點三角形為直角三角形,并且有,,可由勾股定理得出關系,從而得到關系,從而求得漸近線方程.【詳解】由題意知,,且點是線段的中點,點是線段的中點,為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點睛】雙曲線上一點與兩焦點構成的三角形,稱為雙曲線的焦點三角形,與焦點三角形有關的計算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關系11、C【解析】先計算出直線恒過定點,而點在圓內(nèi),所以圓與直線相交.【詳解】直線可化為,所以恒過定點.把代入,有:,所以在圓內(nèi),所以圓與直線的位置關系為相交.故選:C12、D【解析】由題設,“需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切)“可得出此兩點處的切線正是兩條直道所在直線,由此規(guī)律驗證四個選項即可得出答案【詳解】由函數(shù)圖象知,此三次函數(shù)在上處與直線相切,在點處與相切,下研究四個選項中函數(shù)在兩點處的切線A:,將0代入,此時導數(shù)為,與點處切線斜率為矛盾,故A錯誤B:,將0代入,此時導數(shù)為,不為,故B錯誤;C:,將2代入,此時導數(shù)為,與點處切線斜率為3矛盾,故C錯誤;D:,將0,2代入,解得此時切線的斜率分別是,3,符合題意,故D正確;故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作圖,考慮底面是正三角形,按照線面夾角的定義構造直角三角形即可.【詳解】依題意,作圖如下,取的中點G,連結,∵是正三角形,∴,,又∵是正三棱柱,∴底面,∴,即平面,,與平面的夾角=,在中,,故答案為:.14、【解析】設球的半徑為,則球的大圓的半徑為,根據(jù)圓的面積公式列方程求出,再由球的表面積公式即可求解.【詳解】設球的半徑為,則球的大圓的半徑為,所以球的大圓的面積為,可得,所以該球的表面積為.故答案為:.15、【解析】利用點差法可求得的值,利用離心率公式的值.【詳解】設點、,則,由已知可得,由題意可得,將兩個等式相減得,所以,,因此,.故答案為:.16、假【解析】列舉特殊值,判斷真假命題.【詳解】當時,,所以,命題“若實數(shù)a,b滿足,則且”是假命題.故答案為:假三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】(1)根據(jù)給定條件求出橢圓長半軸長a即可計算得解.(2)將代入橢圓的方程,再結合給定條件求出k值即可計算出AB的長.(3)設出直線PR的方程,再與橢圓的方程聯(lián)立求出點P坐標,同理可得點Q坐標,計算PQ的斜率即可作答.【小問1詳解】依題意,橢圓的半焦距c=1,而,解得,則,所以橢圓的方程是:.【小問2詳解】由消去y并整理得:,解得,,于是得線段AB的中點,直線OM斜率為,解得,因此,,所以線段AB的長為.【小問3詳解】由(1)知,點,依題意,設直線PR的斜率為,直線PR方程為:,由消去y并整理得,,設點,則有,顯然直線QR的斜率為-t,設點,同理有,于是得直線PQ的斜率,所以直線PQ的斜率的所有可能值組成的集合.【點睛】方法點睛:求橢圓的標準方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結合焦點位置可寫出橢圓方程②待定系數(shù)法:若焦點位置明確,則可設出橢圓的標準方程,結合已知條件求出a,b;若焦點位置不明確,則需要分焦點在x軸上和y軸上兩種情況討論.18、(1)證明見解析,;(2).【解析】(1)將給定等式變形,計算即可判斷數(shù)列類型,再求出其通項而得解;(2)利用(1)的結論求出數(shù)列的通項,然后利用錯位相減法求解即得.【詳解】(1)因數(shù)列滿足,,則,而,于是數(shù)列是首項為1,公比為2的等比數(shù)列,,即,所以數(shù)列是等比數(shù)列,,;(2)由(1)知,則于是得,,所以數(shù)列的前項和.19、(1)(2)【解析】根據(jù)復合命題的真值表知:p真q假;非q是非p的充分不必要條件,等價于p是q的充分不必要條件,等價于p是q的真子集【詳解】命題p:,即;命題,即;由于“”為真命題,則p真q假,從而由q假得,,所以x的取值范圍是命題p:,即命題q:,即由于是的充分不必要條件,則p是q的充分不必要條件即有,【點睛】本題考查了復合命題及其真假屬基礎題20、(1)證明見解析;(2);(3).【解析】(1)連接、,長方體、線面垂直的性質(zhì)有、,再根據(jù)線面垂直的判定、性質(zhì)即可證結論.(2)連接,由已知條件及勾股定理可得、,即可求、,等體積法求到面的距離,又直線與面所成角即為與面所成角,即可求線面角的正弦值.(3)由題設易知二面角為,過作于,連接,可得二面角平面角為,令,由長方體的性質(zhì)及勾股定理構造方程求即可.【小問1詳解】由題設,連接、,又長方體中,∴為正方形,即,又面,面,即,∵,面,∴面,而面,即.【小問2詳解】連接,由E為棱的中點,則,∴,又,故,∴,又,,故,則,由,若到面的距離為,又,,∴,可得,又,∴直線與面所成角即為與面所成角為,故.【小問3詳解】二面角大小為,即二面角為,由長方體性質(zhì)知:面,面,則,過作于,連接,又,∴面,則二面角平面角為,∴,令,則,故,而,,∴,∴,整理得,解得.∴時,二面角的大小為.21、【解析】設線段的中點的坐標為,點的坐標為,根據(jù)中點坐標公式和代入法求得線段中點的軌跡方程.【詳解】解設線段的中點的坐標為,點的坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論