版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省杭州八校聯(lián)盟2026屆高一數(shù)學第一學期期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最小值為()A. B.C. D.2.在同一直角坐標系中,函數(shù)的圖像可能是()A. B.C. D.3.已知,都為單位向量,且,夾角的余弦值是,則A. B.C. D.4.設(shè),且,則()A. B.10C.20 D.1005.箱子中放有一雙紅色和一雙黑色的襪子,現(xiàn)從箱子中同時取出兩只襪子,則取出的兩只襪子正好可以配成一雙的概率為()A. B.C. D.6.如圖,在中,點是線段及、的延長線所圍成的陰影區(qū)域內(nèi)(含邊界)的任意一點,且,則在直角坐標平面上,實數(shù)對所表示的區(qū)域在直線的右下側(cè)部分的面積是()A. B.C. D.不能求7.從1,2,3,4這4個數(shù)中,不放回地任意取兩個數(shù),兩個數(shù)都是奇數(shù)概率是A. B.C. D.8.已知兩條繩子提起一個物體處于平衡狀態(tài).若這兩條繩子互相垂直,其中一條繩子的拉力為50,且與兩繩拉力的合力的夾角為30°,則另一條繩子的拉力為()A.100 B.C.50 D.9.已知,,c=40.1,則()A. B.C. D.10.已知函數(shù),則使成立的x的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),則的單調(diào)遞增區(qū)間是______12.已知冪函數(shù)為奇函數(shù),則___________.13.公元前6世紀,古希臘的畢達哥拉斯學派通過研究正五邊形和正十邊形的作圖,發(fā)現(xiàn)了黃金分割值約為0.618,這一數(shù)值也可以表示為.若,則_________.14.已知函數(shù),若,,則的取值范圍是________15.已知是定義在上的奇函數(shù),當時,,則的值為________________16.已知偶函數(shù)在單調(diào)遞減,.若,則的取值范圍是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(A,是常數(shù),,,)在時取得最大值3(1)求的最小正周期;(2)求的解析式;(3)若,求18.已知集合,集合(1)若“”是“”的充分條件,求實數(shù)的取值范圍;(2)若,求實數(shù)的取值范圍.19.若函數(shù)的自變量的取值范圍為時,函數(shù)值的取值范圍恰為,就稱區(qū)間為的一個“和諧區(qū)間”.(1)先判斷“函數(shù)沒有“和諧區(qū)間”是否正確,再寫出函數(shù)“和諧區(qū)間”;(2)若是定義在上的奇函數(shù),當時,.(i)求的“和諧區(qū)間”;(ii)若函數(shù)的圖象是在定義域內(nèi)所有“和諧區(qū)間”上的圖象,是否存在實數(shù),使集合恰含有個元素,若存在,求出的取值范圍;若不存在,請說明理由.20.已知兩條直線(1)若,求實數(shù)的值;(2)若,求實數(shù)的值21.已知函數(shù)fx=2sin(1)在用“五點法”作函數(shù)fx2x-0ππ3π2πx3π5π9πf0200完成上述表格,并在坐標系中畫出函數(shù)y=fx在區(qū)間0,π(2)求函數(shù)fx(3)求函數(shù)fx在區(qū)間-π
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】用二倍角公式及誘導(dǎo)公式將函數(shù)化簡,再結(jié)合二次函數(shù)最值即可求得最值.【詳解】由因為所以當時故選:B2、D【解析】通過分析冪函數(shù)和對數(shù)函數(shù)的特征可得解.【詳解】函數(shù),與,答案A沒有冪函數(shù)圖像,答案B.中,中,不符合,答案C中,中,不符合,答案D中,中,符合,故選D.【點睛】本題主要考查了冪函數(shù)和對數(shù)函數(shù)的圖像特征,屬于基礎(chǔ)題.3、D【解析】利用,結(jié)合數(shù)量積的定義可求得的平方的值,再開方即可【詳解】依題意,,故選D【點睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運算,屬基礎(chǔ)題.向量數(shù)量積的運算主要掌握兩點:一是數(shù)量積的基本公式;二是向量的平方等于向量模的平方.4、A【解析】根據(jù)指數(shù)式與對數(shù)的互化和對數(shù)的換底公式,求得,,進而結(jié)合對數(shù)的運算公式,即可求解.【詳解】由,可得,,由換底公式得,,所以,又因為,可得故選:A.5、B【解析】先求出試驗的樣本空間,再求有利事件個數(shù),最后用概率公式計算即可.【詳解】兩只紅色襪子分別設(shè)為,,兩只黑色襪子分別設(shè)為,,這個試驗的樣本空間可記為,共包含6個樣本點,記為“取出的兩只襪子正好可以配成一雙”,則,包含的樣本點個數(shù)為2,所以.故選:B6、A【解析】由點是由線段及、的延長線所圍成的陰影區(qū)域內(nèi)(含邊界)的任意一點,作的平行線,把中、所滿足的不等式表示出來,然后作出不等式組所表示的可行域,并計算出可行域在直線的右下側(cè)部分的面積即可.【詳解】如下圖,過作,交的延長線于,交的延長線于,設(shè),,,,則,所以,得,所以.作出不等式組對應(yīng)的可行域,如下圖中陰影部分所示,故所求面積為,故選:A.【點睛】本題考查二元一次不等式組與平面區(qū)域的關(guān)系,考查轉(zhuǎn)化思想,是難題.解決本題的關(guān)鍵是建立、的不等式組,將問題轉(zhuǎn)化為線性規(guī)劃問題求解.7、A【解析】從1,2,3,4這4個數(shù)中,不放回地任意取兩個數(shù),共有(12),(1,3),(1,4),(2,1),(2,3),(2,4)(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12種其中滿足條件兩個數(shù)都是奇數(shù)的有(1,3),(3,1)兩種情況故從1,2,3,4這4個數(shù)中,不放回地任意取兩個數(shù),兩個數(shù)都是奇數(shù)的概率.故選A.8、D【解析】利用向量的平行四邊形法則求解即可【詳解】如圖,兩條繩子提起一個物體處于平衡狀態(tài),不妨設(shè),根據(jù)向量的平行四邊形法則,故選:D9、A【解析】利用指對數(shù)函數(shù)的性質(zhì)判斷指對數(shù)式的大小.【詳解】由,∴.故選:A.10、C【解析】考慮是偶函數(shù),其單調(diào)性是關(guān)于y軸對稱的,只要判斷出時的單調(diào)性,利用對稱關(guān)系即可.【詳解】,是偶函數(shù);當時,由于增函數(shù),是增函數(shù),所以是增函數(shù),是關(guān)于y軸對稱的,當時,是減函數(shù),作圖如下:欲使得,只需,兩邊取平方,得,解得;故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】函數(shù)是由和復(fù)合而成,分別判斷兩個函數(shù)的單調(diào)性,根據(jù)復(fù)合函數(shù)的單調(diào)性同增異減即可求解.【詳解】函數(shù)是由和復(fù)合而成,因為為單調(diào)遞增函數(shù),對稱軸為,開口向上,所以在上單調(diào)遞減,在上單調(diào)遞增,所以在上單調(diào)遞減,在上單調(diào)遞增,所以的單調(diào)遞增區(qū)間為,故答案為:.12、【解析】根據(jù)冪函數(shù)的定義,結(jié)合奇函數(shù)的定義進行求解即可.【詳解】因為是冪函數(shù),所以,或,當時,,因為,所以函數(shù)是偶函數(shù),不符合題意;當時,,因為,所以函數(shù)是奇函數(shù),符合題意,故答案為:13、【解析】利用同角的基本關(guān)系式,可得,代入所求,結(jié)合輔助角公式,即可求解【詳解】因為,,所以,所以,故答案為【點睛】本題考查同角三角函數(shù)的基本關(guān)系式,輔助角公式,考查計算化簡的能力,屬基礎(chǔ)題14、【解析】先利用已知條件,結(jié)合圖象確定的取值范圍,設(shè),即得到是關(guān)于t的二次函數(shù),再求二次函數(shù)的取值范圍即可.【詳解】先作函數(shù)圖象如下:由圖可知,若,,設(shè),則,,由知,;由知,;故,,故時,最小值為,時,最大值為,故的取值范圍是.故答案為:.【點睛】本題解題關(guān)鍵是數(shù)形結(jié)合,通過圖象判斷的取值范圍,才能分別找到與相等函數(shù)值t的關(guān)系,構(gòu)建函數(shù)求值域來突破難點.15、-7【解析】由已知是定義在上的奇函數(shù),當時,,所以,則=點睛:利用函數(shù)奇偶性求有關(guān)參數(shù)問題時,要靈活選用奇偶性的常用結(jié)論進行處理,可起到事半功倍的效果:①若奇函數(shù)在處有定義,則;②奇函數(shù)+奇函數(shù)=奇函數(shù),偶函數(shù)+偶函數(shù)=偶函數(shù),奇函數(shù)奇函數(shù)=偶函數(shù)偶函數(shù)=偶函數(shù);③特殊值驗證法16、【解析】因為是偶函數(shù),所以不等式,又因為在上單調(diào)遞減,所以,解得.考點:本小題主要考查抽象函數(shù)的奇偶性與單調(diào)性,考查絕對值不等式的解法,熟練基礎(chǔ)知識是關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】(1)根據(jù)最小正周期公式可直接求出;(2)根據(jù)函數(shù)圖象與性質(zhì)求出解析式;(3)根據(jù)誘導(dǎo)公式以及二倍角公式進行化簡即可求值.【詳解】解:(1)最小正周期(2)依題意,因為且,因為所以,,(3)由得,即,所以,【點睛】求三角函數(shù)的解析式時,由ω=即可求出ω;確定φ時,若能求出離原點最近的右側(cè)圖象上升(或下降)的“零點”橫坐標x0,則令ωx0+φ=0(或ωx0+φ=π),即可求出φ,否則需要代入點的坐標,利用一些已知點的坐標代入解析式,再結(jié)合函數(shù)的性質(zhì)解出ω和φ,若對A,ω的符號或?qū)Ζ盏姆秶幸?,則可用誘導(dǎo)公式變換使其符合要求.18、(1);(2).【解析】(1)由已知可得,可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍;(2)分、兩種情況討論,根據(jù)可得出關(guān)于實數(shù)的不等式(組),綜合可得出實數(shù)的取值范圍.【小問1詳解】解:由已知得,故有,解得,故的取值范圍為.【小問2詳解】解:當時,則,解得;當時,則或,解得.∴的取值范圍為.19、(1)正確,;(2)(i)和,(ii)存在符合題意,理由見解析.【解析】(1)根據(jù)和諧區(qū)間的定義判斷兩個函數(shù)即可;(2)(i)根據(jù)是奇函數(shù)求出的解析式,再利用“和諧區(qū)間”的定義求出的“和諧區(qū)間”,(ii)由(i)可得的解析式,由與都是奇函數(shù),問題轉(zhuǎn)化為與的圖象在第一象限內(nèi)有一個交點,由單調(diào)性求出的端點坐標,代入可得臨界值即可求解.【小問1詳解】函數(shù)定義域為,且為奇函數(shù),當時,單調(diào)遞減,任意的,則,所以時,沒有“和諧區(qū)間”,同理時,沒有“和諧區(qū)間”,所以“函數(shù)沒有“和諧區(qū)間”是正確的,在上單調(diào)遞減,所以在上單調(diào)遞減,所以值域為,即,所以,所以,是方程的兩根,因為,解得,所以函數(shù)的“和諧區(qū)間”為.【小問2詳解】(i)因為當時,所以當時,,所以因為是定義在上的奇函數(shù),所以,所以當時,,可得,設(shè),因為在上單調(diào)遞減,所以,,所以,,所以,是方程的兩個不相等的正數(shù)根,即,是方程的兩個不相等的正數(shù)根,且,所以,,所以在區(qū)間上的“和諧區(qū)間”是,同理可得,在區(qū)間上的“和諧區(qū)間”是.所以的“和諧區(qū)間”是和,(ii)存在,理由如下:因為函數(shù)的圖象是以在定義域內(nèi)所有“和諧區(qū)間”上的圖象,所以若集合恰含有個元素,等價于函數(shù)與函數(shù)的圖象有兩個交點,且一個交點在第一象限,一個交點在第三象限.因為與都是奇函數(shù),所以只需考慮與的圖象在第一象限內(nèi)有一個交點.因為在區(qū)間上單調(diào)遞減,所以曲線的兩個端點為,.因為,所以的零點是,,或所以當?shù)膱D象過點時,,;當圖象過點時,,,所以當時,與的圖象在第一象限內(nèi)有一個交點.所以與的圖象有兩個交點.所以的取值范圍是.20、(1);(2).【解析】(1)本小題考查兩直線平行的性質(zhì),當兩直線的斜率存在且兩直線平行時,他們的斜率相等,注意截距不相等;由,得或-1,經(jīng)檢驗,均滿足;(2)本小題考查兩直線垂直的性質(zhì),當兩直線斜率存在時,兩直線的斜率之積為,注意斜率不存在的情況;由于直線的斜率存在,所以,由此即可求出結(jié)果.試題解析:(1)因為直線的斜率存在,又∵,∴,∴或,兩條直線在軸是的截距不相等,所以或滿足兩條直線平行;(2)因為兩條直線互相垂直,且直線的斜率存在,所以,即,解得.點睛:設(shè)平面上兩條直線的方程分別為;
比值法:和相交;和垂直;和平行;和重合
斜率法:(條件:兩直線斜率都存在,則可化成點斜式)與相交;與平行;與重合;與垂直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 妊娠合并體外胎兒治療的并發(fā)癥預(yù)防策略
- 保安員考試題試卷及答案
- 婦科手術(shù)患者生育功能保留溝通策略
- 高職考試真題及答案
- 多組學聯(lián)合在精準醫(yī)學中的臨床實踐指南
- 2025年大學大三(漢語言文學)寫作操作試題及答案
- 多組學技術(shù)在精準醫(yī)療中的風險防控體系
- 2025年中職園林綠化(植物配置應(yīng)用)試題及答案
- 2025年中職(計算機應(yīng)用)計算機技能綜合測試試題及答案
- 2025年大學大四(勞動與社會保障)勞動關(guān)系學綜合測試試題及答案
- 2025年遼鐵單招考試題目及答案
- 2026年生物醫(yī)藥創(chuàng)新金融項目商業(yè)計劃書
- 湖南名校聯(lián)考聯(lián)合體2026屆高三年級1月聯(lián)考化學試卷+答案
- 井下爆破安全培訓(xùn)課件
- 中國馬克思主義與當代2024版教材課后思考題答案
- 2026年日歷表(每月一頁、可編輯、可備注)
- GB/T 22085.2-2008電子束及激光焊接接頭缺欠質(zhì)量分級指南第2部分:鋁及鋁合金
- GB/T 19939-2005光伏系統(tǒng)并網(wǎng)技術(shù)要求
- GB/T 10454-2000集裝袋
- 全球山藥產(chǎn)業(yè)發(fā)展現(xiàn)狀分析
- 工業(yè)管道施工與驗收規(guī)范
評論
0/150
提交評論