2026屆福建漳州市數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2026屆福建漳州市數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2026屆福建漳州市數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2026屆福建漳州市數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2026屆福建漳州市數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆福建漳州市數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則下列等式一定成立的是()A. B.C. D.2.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學(xué)為測量彬塔高度,選取了與塔底在同一水平面內(nèi)的兩個(gè)測量基點(diǎn)與,現(xiàn)測得,,,在點(diǎn)測得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.3.函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.4.已知遞增等比數(shù)列的前n項(xiàng)和為,,且,則與的關(guān)系是()A. B.C. D.5.如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切).已知環(huán)湖彎曲路段為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為()A.B.C.D.6.已知,則()A. B.C. D.7.已知拋物線,則其焦點(diǎn)到準(zhǔn)線的距離為()A. B.C.1 D.48.已知雙曲線C:(,)的一條漸近線被圓所截得的弦長為2,的C的離心率為()A. B.C.2 D.9.已知,,,其中,,,則()A. B.C. D.10.如圖,在四棱錐中,平面,底面是正方形,,則下列數(shù)量積最大的是()A. B.C. D.11.已知實(shí)數(shù)x,y滿足,則的最大值為()A. B.C.2 D.112.等比數(shù)列的前項(xiàng)和為,若,則()A. B.8C.1或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列滿足且,則________.數(shù)列的通項(xiàng)=________.14.已知,,則以AB為直徑的圓的方程為___________.15.已知函數(shù),若過點(diǎn)存在三條直線與曲線相切,則的取值范圍為___________16.如圖,某海輪以的速度航行,若海輪在點(diǎn)測得海面上油井在南偏東,向北航行后到達(dá)點(diǎn),測得油井在南偏東,海輪改為沿北偏東的航向再行駛到達(dá)點(diǎn),則,間的距離是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知多面體,,,均垂直于平面,,,,(1)證明:平面;(2)求直線平面所成的角的正弦值18.(12分)已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,的面積為1.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)是拋物線上異于點(diǎn)的一點(diǎn),直線與直線交于點(diǎn),過作軸的垂線交拋物線于點(diǎn),求證:直線過定點(diǎn).19.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)求的單調(diào)區(qū)間;20.(12分)在等差數(shù)列中,已知且(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列前項(xiàng)和21.(12分)已知數(shù)列的首項(xiàng),前n項(xiàng)和為,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)設(shè),求數(shù)列的前n項(xiàng)和.22.(10分)已知,,(1)若,為真命題,為假命題,求實(shí)數(shù)x的取值范圍;(2)若是的充分不必要條件,求實(shí)數(shù)m的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用復(fù)數(shù)除法運(yùn)算和復(fù)數(shù)相等可用表示出,進(jìn)而得到之間關(guān)系.【詳解】,,,則.故選:D.2、D【解析】在△中有,再應(yīng)用正弦定理求,再在△中,即可求塔高.【詳解】由題設(shè)知:,又,△中,可得,在△中,,則.故選:D3、B【解析】求出函數(shù)的定義域,解不等式可得出函數(shù)的單調(diào)遞增區(qū)間.【詳解】函數(shù)的定義域?yàn)椋?,可?因此,函數(shù)的單調(diào)遞增區(qū)間為.故選:B.4、D【解析】設(shè)等比數(shù)列的公比為,由已知列式求得,再由等比數(shù)列的通項(xiàng)公式與前項(xiàng)和求解.【詳解】設(shè)等比數(shù)列的公比為,由,得,所以,又,所以,所以,,所以即故選:D5、D【解析】由題設(shè),“需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切)“可得出此兩點(diǎn)處的切線正是兩條直道所在直線,由此規(guī)律驗(yàn)證四個(gè)選項(xiàng)即可得出答案【詳解】由函數(shù)圖象知,此三次函數(shù)在上處與直線相切,在點(diǎn)處與相切,下研究四個(gè)選項(xiàng)中函數(shù)在兩點(diǎn)處的切線A:,將0代入,此時(shí)導(dǎo)數(shù)為,與點(diǎn)處切線斜率為矛盾,故A錯(cuò)誤B:,將0代入,此時(shí)導(dǎo)數(shù)為,不為,故B錯(cuò)誤;C:,將2代入,此時(shí)導(dǎo)數(shù)為,與點(diǎn)處切線斜率為3矛盾,故C錯(cuò)誤;D:,將0,2代入,解得此時(shí)切線的斜率分別是,3,符合題意,故D正確;故選:D.6、C【解析】取中間值,化成同底利用單調(diào)性比較可得.【詳解】,,,故,故選:C7、B【解析】化簡拋物線的方程為,求得,即為焦點(diǎn)到準(zhǔn)線的距離.【詳解】由題意,拋物線,即,解得,即焦點(diǎn)到準(zhǔn)線的距離是故選:B8、C【解析】由雙曲線的方程可得漸近線的直線方程,根據(jù)直線和圓相交弦長可得圓心到直線的距離,進(jìn)而可得,結(jié)合,可得離心率.【詳解】雙曲線的一條漸近線方程為,即,被圓所截得的弦長為2,所以圓心到直線的距離為,,解得,故選:C【點(diǎn)睛】本題考查了雙曲線的漸近線和離心率、直線和圓的相交弦、點(diǎn)到直線距離等基本知識(shí),考查了運(yùn)算求解能力和邏輯推理能力,轉(zhuǎn)化的數(shù)學(xué)思想,屬于一般題目.9、C【解析】先令函數(shù),求導(dǎo)判斷函數(shù)的單調(diào)性,并作出函數(shù)的圖像,由函數(shù)的單調(diào)性判斷,再由對稱性可得.【詳解】由,則,同理,,令,則,當(dāng);當(dāng),∴在上單調(diào)遞減,單調(diào)遞增,所以,即可得,又,,由圖的對稱性可知,.故選:C10、B【解析】設(shè),根據(jù)線面垂直的性質(zhì)得,,,,根據(jù)向量數(shù)量積的定義逐一計(jì)算,比較可得答案.【詳解】解:設(shè),因?yàn)槠矫?,所以,,,,又底面是正方形,所以,,對于A,;對于B,;對于C,;對于D,,所以數(shù)量積最大的是,故選:B.11、A【解析】作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求出的最大值.【詳解】作出可行域如圖所示,由可知,此直線可用由直線平移得到,求的最大值,即直線的截距最大,當(dāng)直線過直線的交點(diǎn)時(shí)取最大值,即故選:12、C【解析】根據(jù)等比數(shù)列的前項(xiàng)和公式及等比數(shù)列通項(xiàng)公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,則因?yàn)椋?,即,解得或,所以?故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①.5②.【解析】設(shè),根據(jù)題意得到數(shù)列是等差數(shù)列,求得,得到,利用,結(jié)合“累加法”,即可求得.【詳解】解:由題意,數(shù)列滿足,所以當(dāng)時(shí),,,解得,設(shè),則,且,所以數(shù)列是等差數(shù)列,公差為,首項(xiàng)為,所以,即,所以,當(dāng)時(shí),可得,其中也滿足,所以數(shù)列的通項(xiàng)公式為.故答案為:;.14、【解析】求圓心及半徑即可.【詳解】由已知可得圓心坐標(biāo)為,半徑為,所以圓的方程為:.故答案為:15、【解析】設(shè)過M的切線切點(diǎn)為,求出切線方程,參變分離得,令,則原問題等價(jià)于y=g(x)與y=-m-2的圖像有三個(gè)交點(diǎn),根據(jù)導(dǎo)數(shù)研究g(x)的圖像即可求出m的范圍【詳解】,設(shè)過點(diǎn)的直線與曲線相切于點(diǎn),則,化簡得,,令,則過點(diǎn)存在三條直線與曲線相切等價(jià)于y=g(x)與y=-m-2的圖像有三個(gè)交點(diǎn)∵,故當(dāng)x<0或x>1時(shí),,g(x)單調(diào)遞增;當(dāng)0<x<1時(shí),,g(x)單調(diào)遞減,又,,∴g(x)如圖,∴-2<-m-2<0,即故答案為:﹒16、【解析】根據(jù)條件先由正弦定理求出的長,得出,求出的長,由勾股定理可得答案.【詳解】海輪向北航行后到達(dá)點(diǎn),則由題意,在中,又則,由正弦定理可得:,即在中,,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)由已知條件可得,,則,,再利用線面垂直的判定定理可證得結(jié)論;(2)如圖,過點(diǎn)作,交直線于點(diǎn),連接,可證得平面,從而是與平面所成的角,然后在求解即可【詳解】(1)證明:由,,,,得,所以,由由,,,,得,由,得,由,得,所以,故,又,因此平面(2)解如圖,過點(diǎn)作,交直線于點(diǎn),連接由平面,平面,得平面平面,由,得平面,所以是與平面所成的角由,,得,,所以,故因此,直線與平面所成的角的正弦值是【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查線面垂直的判定和線面角的求法,解題的關(guān)鍵是通過過點(diǎn)作,交直線于點(diǎn),連接,然后結(jié)合條件可證得是與平面所成的角,從而在三角形中求解即可,考查推理能力和計(jì)算能力,屬于中檔題18、(1)(2)證明見解析【解析】(1)由條件列方程求,由此可得拋物線方程;(2)方法一:聯(lián)立直線與拋物線方程,結(jié)合條件三點(diǎn)共線,可證明直線過定點(diǎn),方法二:聯(lián)立直線與拋物線方程,聯(lián)立直線與直線求,由垂直與軸列方程化簡,可證明直線過定點(diǎn).【小問1詳解】因?yàn)辄c(diǎn)在拋物線上,所以,即,,因?yàn)?,故解得,拋物線的標(biāo)準(zhǔn)方程為【小問2詳解】設(shè)直線的方程為,由,得,所以,由(1)可知當(dāng)時(shí),,此時(shí)直線的方程為,若時(shí),因?yàn)槿c(diǎn)共線,所以,即,又因?yàn)?,,化簡可得,又,進(jìn)而可得,整理得,因?yàn)樗?,此時(shí)直線的方程為,直線恒過定點(diǎn)又直線也過點(diǎn),綜上:直線過定點(diǎn)解法二:設(shè)方程,得若直線斜率存在時(shí)斜率方程為即解得:,于是有整理得.(*)代入上式可得所以直線方程為直線過定點(diǎn).若直線斜率不存在時(shí),直線方程為所以P點(diǎn)坐標(biāo)為,M點(diǎn)坐標(biāo)為此時(shí)直線方程為過點(diǎn)綜上:直線過定點(diǎn).【點(diǎn)睛】解決直線與拋物線的綜合問題時(shí),要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個(gè)條件,明確確定直線、拋物線的條件;(2)強(qiáng)化有關(guān)直線與拋物線聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題19、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當(dāng)時(shí),在上恒成立,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;③當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求解曲線在某一點(diǎn)處的切線方程、利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問題,屬于??碱}型.20、(1)(2)【解析】(1)由等差數(shù)列基本量的計(jì)算即可求解;(2)由裂項(xiàng)相消求和法即可求解.【小問1詳解】解:由題意,設(shè)等差數(shù)列的公差為,則,,解得,;【小問2詳解】解:,.21、(1)證明見解析(2)【解析】(1)當(dāng)時(shí),由,得,兩式相減化簡可得,再對等式兩邊同時(shí)減去1,化簡可證得結(jié)論,(2)由(1)得,然后利用分組求和可求出【小問1詳解】由已知得,.當(dāng)時(shí),.兩式相減得,.于是,即,又,,,所以滿足上式,所以對都成立,故數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論