版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆湖南省湖南師大附中數(shù)學高二上期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在某市第一次全民核酸檢測中,某中學派出了8名青年教師參與志愿者活動,分別派往2個核酸檢測點,每個檢測點需4名志愿者,其中志愿者甲與乙要求在同一組,志愿者丙與丁也要求在同一組,則這8名志愿者派遣方法種數(shù)為()A.20 B.14C.12 D.62.已知橢圓的左、右焦點分別為,點是橢圓上的一點,點是線段的中點,為坐標原點,若,則()A.3 B.4C.6 D.113.已知變量x,y具有線性相關關系,它們之間的一組數(shù)據(jù)如下表所示,若y關于x的線性回歸方程為,則m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.34.已知點是拋物線上的動點,過點作圓的切線,切點為,則的最小值為()A. B.C. D.5.若方程表示圓,則實數(shù)的取值范圍為()A. B.C. D.6.下列命題中的假命題是()A.若log2x<2,則0<x<4B.若與共線,則與的夾角為0°C.已知各項都不為零的數(shù)列{an}滿足an+1-2an=0,則該數(shù)列為等比數(shù)列D.點(π,0)是函數(shù)y=sinx圖象上一點7.有甲、乙兩個抽獎箱,甲箱中有3張無獎票3張有獎票,乙箱中有4張無獎票2張有獎票,某人先從甲箱中抽出一張放進乙箱,再從乙箱中任意抽出一張,則最后抽到有獎票的概率是()A. B.C. D.8.求點關于x軸的對稱點的坐標為()A. B.C. D.9.平面的法向量,平面的法向量,已知,則等于()A B.C. D.10.命題:,的否定為()A., B.不存在,C., D.,11.命題P:ax2+2x﹣1=0有實數(shù)根,若¬p是假命題,則實數(shù)a的取值范圍是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}12.某老師希望調查全校學生平均每天的自習時間.該教師調查了60位學生,發(fā)現(xiàn)他們每天的平均自習時間是3.5小時.這里的總體是()A.楊高的全校學生;B.楊高的全校學生的平均每天自習時間;C.所調查的60名學生;D.所調查的60名學生的平均每天自習時間.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的兩個焦點分別為,,,點在橢圓上,若,且的面積為4,則橢圓的標準方程為______14.過圓內(nèi)的點作一條直線,使它被該圓截得的線段最長,則直線的方程是______15.已知是數(shù)列的前n項和,且,則________;數(shù)列的通項公式________16.已知、是橢圓的兩個焦點,點在橢圓上,且,,則橢圓離心率是___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③這三個條件中任選一個,補充在下面橫線上,并解答.在中,內(nèi)角,,的對邊分別為,,,且___________.(1)求角的大?。唬?)已知,,點在邊上,且,求線段的長.注:如果選擇多個條件分別解答,按第一個解答計分.18.(12分)已知點A(1,2)在拋物線C∶上,過點A作兩條直線分別交拋物線于點D,E,直線AD,AE的斜率分別為kAD,kAE,若直線DE過點P(-1,-2)(1)求拋物線C的方程;(2)求直線AD,AE的斜率之積.19.(12分)已知拋物線的焦點在直線上(1)求拋物線的方程(2)設直線經(jīng)過點,且與拋物線有且只有一個公共點,求直線的方程20.(12分)已知圓,點(1)若點在圓外部,求實數(shù)的取值范圍;(2)當時,過點的直線交圓于,兩點,求面積的最大值及此時直線l的斜率21.(12分)如圖,在四棱錐中,底面,,是的中點,,.(1)證明:;(2)求直線與平面所成角的正弦值.22.(10分)已知橢圓過點,且離心率.(1)求橢圓C的標準方程;(2)若動點在橢圓上,且在第一象限內(nèi),點分別為橢圓的左、右頂點,直線分別與橢圓C交于點,過作直線的平行線與橢圓交于點,問直線是否過定點,若經(jīng)過定點,求出該定點的坐標;若不經(jīng)過定點,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】分(甲乙)、(丙?。┰偻唤M和不在同一組兩種情況討論,按照分類、分步計數(shù)原理計算可得;【詳解】解:依題意甲乙丙丁四人再同一組,有種;(甲乙),(丙?。┎辉谕唤M,先從其余4人選2人與甲乙作為一組,另外2人與丙丁作為一組,再安排到兩個核酸檢測點,則有種,綜上可得一共有種安排方法,故選:B2、A【解析】利用橢圓的定義可得,再結合條件即求.【詳解】由橢圓的定義可知,因為,所以,因為點分別是線段,的中點,所以是的中位線,所以.故選:A.3、A【解析】先求得樣本中心,代入回歸方程,即可得答案.【詳解】由題意得,又樣本中心在回歸方程上,所以,解得.故選:A4、C【解析】分析可知圓的圓心為拋物線的焦點,可求出的最小值,再利用勾股定理可求得的最小值.【詳解】設點的坐標為,有,由圓的圓心坐標為,是拋物線的焦點坐標,有,由圓的幾何性質可得,又由,可得的最小值為故選:C.5、D【解析】將方程化為標準式即可.【詳解】方程化為標準式得,則.故選:D.6、B【解析】四個選項中需要分別利用對數(shù)函數(shù)的性質,向量共線的定義,等比數(shù)列的定義以及三角函數(shù)圖像判斷,根據(jù)題意結合知識點,即可得出結果.【詳解】選項A,由于此對數(shù)函數(shù)單調遞增,并且結合對數(shù)函數(shù)定義域,即可求得結果,所以是真命題;選項B,向量共線,夾角可能是或,所以是假命題;選項C,將式子變形可得,符合等比數(shù)列定義,所以是真命題;選項D,將點代入解析式,等號成立,所以是真命題;故選B.【點睛】本題考查命題真假的判定,根據(jù)題意結合各知識點即可判斷真假,需要熟練掌握對數(shù)函數(shù)、等比數(shù)列、向量夾角以及三角函數(shù)的基本性質.7、B【解析】先分為在甲箱中抽出一張有獎票放入乙箱和在甲箱中抽出一張無獎票放入乙箱,進而結合條件概率求概率的方法求得答案.【詳解】記表示在甲箱中抽出一張有獎票放進乙箱,表示在甲箱中抽出一張無獎票放進乙箱,A表示最后抽到有獎票.所以,,于是.故選:B.8、D【解析】根據(jù)點關于坐標軸的對稱點特征,直接寫出即可.【詳解】A點關于x軸對稱點,橫坐標不變,縱坐標與豎坐標為原坐標的相反數(shù),故點的坐標為,故選:D9、A【解析】根據(jù)兩個平面平行得出其法向量平行,根據(jù)向量共線定理進行計算即可.【詳解】由題意得,因為,所以(),即,解得,所以.故選:A10、D【解析】含有量詞的命題的否定方法:先改變量詞,然后再否定結論即可【詳解】解:命題:,的否定為:,故選:D11、C【解析】根據(jù)是假命題,判斷出是真命題.對分成,和兩種情況,結合方程有實數(shù)根,求得的取值范圍.詳解】┐p是假命題,則p是真命題,∴ax2+2x﹣1=0有實數(shù)根,當a=0時,方程為2x﹣1=0,解得x=0.5,有根,符合題意;當a≠0時,方程有根,等價于△=4+4a≥0,∴a≥﹣1且,綜上所述,a的可能取值為a≥﹣1故選:C【點睛】本小題主要考查根據(jù)命題否定的真假性求參數(shù),屬于基礎題.12、B【解析】由總體的概念可得答案.【詳解】某老師希望調查全校學生平均每天的自習時間,該教師調查了60位學生,發(fā)現(xiàn)他們每天的平均自習時間是3.5小時,這里的總體是全校學生平均每天的自習時間.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意得到為直角三角形.設,,根據(jù)橢圓的離心率,定義,直角三角形的面積公式,勾股定理建立方程的方程組,消元后可求得的值.【詳解】由題可知,∴,又,代入上式整理得,由得為直角三角形又的面積為4,設,,則解得所以橢圓的標準方程為14、【解析】當直線l過圓心時滿足題意,進而求出答案.【詳解】圓的標準方程為:,圓心,當l過圓心時滿足題意,,所以l的方程為:.故答案為:.15、①.②.【解析】當時,,推導出,從而數(shù)列是從第二項起,公比為的等比數(shù)列,進而能求出數(shù)列的通項公式,即可求得答案.【詳解】為數(shù)列的前項和,①時,②①②,得:,,,,數(shù)列的通項公式為.故答案為:;.16、【解析】先由,根據(jù)橢圓的定義,求出,,再由余弦定理,根據(jù),即可列式求出離心率.【詳解】因為點在橢圓上,所以,又,所以,因,在中,由,根據(jù)余弦定理可得,解得(負值舍去)故答案為:.【點睛】本題主要考查求橢圓的離心率,屬于??碱}型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)若選①,則根據(jù)正弦定理,邊化角,結合二倍角公式,求得,可得答案;若選②,則根據(jù)余弦定理和三角形面積公式,將化簡,求得,可得答案;若選③,則切化弦,化簡可得到的值,求得答案;(2)由余弦定理求出,進而求得,設,,在中用余弦定理列出方程,求得答案.【小問1詳解】若選①,則根據(jù)正弦定理可得:,由于,,故,則;若選②,則,即,則,而,故;若選③,則,即,則,而,故;【小問2詳解】如圖示:,故,故,在中,設,則,則,即,解得,或(舍去)故.18、(1)(2)【解析】(1)代入點即可求得拋物線方程;(2)聯(lián)立方程后利用韋達定理求出,,,,然后代入即可求得斜率的積.【小問1詳解】解:點A(1,2)在拋物線C∶上故【小問2詳解】設直線方程為:聯(lián)立方程,整理得:由題意及韋達定理可得:,19、(1)(2)的方程為、、【解析】(1)求得點的坐標,由此求得,進而求得拋物線的方程.(2)結合圖象以及判別式求得直線的方程.【小問1詳解】拋物線的焦點在軸上,且開口向上,直線與軸的交點為,則,所以,拋物線的方程為.【小問2詳解】當直線的斜率不存在時,直線與拋物線只有一個公共點.那個直線的斜率存在時,設直線的方程為,,,,解得或.所以直線的方程為或.綜上所述,的方程為、、.20、(1);(2)最大值為2,【解析】(1)根據(jù)題意,將圓的方程變形為標準方程,由點與圓的位置關系可得,求解不等式組得答案;(2)當時,圓的方程為,求出圓心與半徑,設,則,分析可得面積的最大值,結合直線與圓的位置關系可得圓心到直線的距離,設直線的方程為,即,由點到直線的距離公式列式求得的值【詳解】解:(1)根據(jù)題意,圓,即,若在圓外,則有,解得:,即的取值范圍為;(2)當時,圓的方程為,圓心為,半徑,設,則,當時,面積取得最大值,且其最大值為2,此時為等腰直角三角形,圓心到直線的距離,設直線的方程為,即,則有,解得,即直線的斜率【點睛】易錯點點睛:本題第一問解答過程中,容易忽視二元二次方程表示圓的條件,導致出錯,解題的時候要考慮周全,考查運算求解能力,是中檔題.21、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,分別求出向量和,證明即可;(2)先求出和平面的法向量,然后利用公式求出,則直線與平面所成角的正弦值即為.【小問1詳解】證明:∵,,∴△≌△,∴,設,在△中,由余弦定理得,即,則,即,,連接交于點,分別以,為軸、軸,過作軸,建立如圖空間直角坐標系,則,,,,,,的中點,則,,∵,∴.【小問2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電瓶充電器管理制度規(guī)范
- 食堂制度欄設計規(guī)范要求
- 完善價格監(jiān)測制度規(guī)范
- ktv收銀員規(guī)范制度
- 展廳看護制度規(guī)范標準
- 電瓶車停車規(guī)范管理制度
- 光伏電站運維制度規(guī)范
- 婦產(chǎn)科醫(yī)院制度及規(guī)范
- 小店餐飲制度規(guī)范要求
- 外出成品檢驗制度規(guī)范
- 安徽省合肥市蜀山區(qū)2024-2025學年上學期八年級數(shù)學期末試卷
- 電商售后客服主管述職報告
- 十五五安全生產(chǎn)規(guī)劃思路
- 上海證券有限責任公司校招職位筆試歷年參考題庫附帶答案詳解
- 剪刀車專項施工方案
- 授信合同與借款合同(標準版)
- 2024-2025學年四川省綿陽市七年級(上)期末數(shù)學試卷
- 道路清掃保潔、垃圾收運及綠化服務方案投標文件(技術標)
- 項目預算管理咨詢方案
- 合成藥物催化技術
- 建立鄉(xiāng)鎮(zhèn)衛(wèi)生院孕情第一時間發(fā)現(xiàn)制度或流程
評論
0/150
提交評論