廣東省深圳市羅湖外國語學校2026屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第1頁
廣東省深圳市羅湖外國語學校2026屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第2頁
廣東省深圳市羅湖外國語學校2026屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第3頁
廣東省深圳市羅湖外國語學校2026屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第4頁
廣東省深圳市羅湖外國語學校2026屆數(shù)學高二上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣東省深圳市羅湖外國語學校2026屆數(shù)學高二上期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,命題“若,則,全為0”的否命題是()A.若,則,全不為0. B.若,不全為0,則.C.若,則,不全為0. D.若,則,全不為0.2.等軸雙曲線的中心在原點,焦點在軸上,與拋物線的準線交于兩點,且則的實軸長為A.1 B.2C.4 D.83.已知直線l:的傾斜角為,則()A. B.1C. D.-14.過點且垂直于直線的直線方程為()A. B.C. D.5.在長方體中,,,點分別在棱上,,,則()A. B.C. D.6.已知直線過點,且與直線垂直,則直線的方程為()A. B.C. D.7.設雙曲線的離心率為,則下列命題中是真命題的為()A.越大,雙曲線開口越小 B.越小,雙曲線開口越大C.越大,雙曲線開口越大 D.越小,雙曲線開口越大8.以下說法:①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;②設有一個回歸方程,變量增加1個單位時,平均增加5個單位③線性回歸方程必過④設具有相關關系的兩個變量的相關系數(shù)為,那么越接近于0,之間的線性相關程度越高;⑤在一個列聯(lián)表中,由計算得的值,那么的值越大,判斷兩個變量間有關聯(lián)的把握就越大。其中錯誤的個數(shù)是()A.0 B.1C.2 D.39.氣象臺正南方向的一臺風中心,正向北偏東30°方向移動,移動速度為,距臺風中心以內(nèi)的地區(qū)都將受到影響,若臺風中心的這種移動趨勢不變,氣象臺所在地受到臺風影響持續(xù)時間大約是()A. B.C. D.10.在正方體中,分別是線段的中點,則點到直線的距離是()A. B.C. D.11.若拋物線焦點與橢圓的右焦點重合,則的值為A. B.C. D.12.下列命題中是真命題的是()A.“”是“”的充分非必要條件B.“”是“”的必要非充分條件C.在中“”是“”的充分非必要條件D.“”是“”的充要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,若圓的過點的三條弦的長,,構成等差數(shù)列,則該數(shù)列的公差的最大值是______.14.直線的傾斜角的取值范圍是______.15.已知實數(shù)x,y滿足約束條件,則的最小值為______.16.已知曲線與曲線有相同的切線,則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)根據(jù)下列條件求圓的方程:(1)圓心在點O(0,0),半徑r=3(2)圓心在點O(0,0),且經(jīng)過點M(3,4)18.(12分)已知圓O:與圓C:(1)在①,②這兩個條件中任選一個,填在下面的橫線上,并解答若______,判斷這兩個圓位置關系;(2)若,求直線被圓C截得的弦長注:若第(1)問選擇兩個條件分別作答,按第一個作答計分19.(12分)如圖,在三棱錐中,,點為線段上的點.(1)若平面,試確定點的位置,并說明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.20.(12分)如圖,在棱長為2的正方體中,,分別為線段,的中點.(1)求點到平面的距離;(2)求平面與平面夾角的余弦值.21.(12分)設函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)若有兩個零點,,求的取值范圍,并證明:22.(10分)年世界人工智能大會已于年月在上海徐匯西岸舉行,某高校的志愿者服務小組受大會展示項目的啟發(fā),會后決定開發(fā)一款“貓捉老鼠”的游戲.如圖所示,、兩個信號源相距米,是的中點,過點的直線與直線的夾角為,機器貓在直線上運動,機器鼠的運動軌跡始終滿足:接收到點的信號比接收到點的信號晚秒(注:信號每秒傳播米).在時刻時,測得機器鼠距離點為米.(1)以為原點,直線為軸建立平面直角坐標系(如圖),求時刻時機器鼠所在位置的坐標;(2)游戲設定:機器鼠在距離直線不超過米的區(qū)域運動時,有“被抓”的風險.如果機器鼠保持目前的運動軌跡不變,是否有“被抓”風險?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)四種命題的關系求解.【詳解】因為否命題是否定原命題的條件和結論,所以命題“若,則,全為0”的否命題是:若,則,不全為0,故選:C2、B【解析】設等軸雙曲線的方程為拋物線,拋物線準線方程為設等軸雙曲線與拋物線的準線的兩個交點,,則,將,代入,得等軸雙曲線的方程為的實軸長為故選3、A【解析】由傾斜角求出斜率,列方程即可求出m.【詳解】因為直線l的傾斜角為,所以斜率.所以,解得:.故選:A4、A【詳解】因為所求直線垂直于直線,又直線的斜率為,所以所求直線的斜率,所以直線方程為,即.故選:A【點睛】本題主要考查直線方程的求法,屬基礎題.5、D【解析】依題意可得,從而得到,即可得到,從而得解;【詳解】解:由長方體的性質(zhì)可得,又,所以,因為,所以,所以,因為,所以;故選:D6、A【解析】求出直線斜率,利用點斜式可得出直線的方程.【詳解】直線的斜率為,則直線的斜率為,故直線的方程為,即.故選:A.7、C【解析】根據(jù)雙曲線的性質(zhì)結合離心率對雙曲線開口大小的影響即可得解.【詳解】解:對于A,越大,雙曲線開口越大,故A錯誤;對于B,越小,雙曲線開口越小,故B錯誤;對于C,由,越大,則越大,雙曲線開口越大,故C正確;對于D,越小,則越小,雙曲線開口越小,故D錯誤.故選:C.8、C【詳解】方差反映一組數(shù)據(jù)的波動大小,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變,故①正確;一個回歸方程,變量增加1個單位時,平均減少5個單位,故②不正確;線性回歸方程必過樣本中心點,故③正確;根據(jù)線性回歸分析中相關系數(shù)的定義:在線性回歸分析中,相關系數(shù)為r,越接近于1,相關程度越大,故④不正確;對于觀察值來說,越大,“x與y有關系”的可信程度越大,故⑤正確.故選:C【點睛】本題主要考查用樣本估計總體、線性回歸方程、獨立性檢驗的基本思想.9、D【解析】利用余弦定理進行求解即可.【詳解】如圖所示:設臺風中心為,,小時后到達點處,即,當時,氣象臺所在地受到臺風影響,由余弦定理可知:,于是有:,解得:,所以氣象臺所在地受到臺風影響持續(xù)時間大約是,故選:D10、A【解析】以為坐標原點,分別以的方向為軸的正方向,建立空間直角坐標系,然后,列出計算公式進行求解即可【詳解】如圖,以為坐標原點,分別以的方向為軸的正方向,建立空間直角坐標系.因為,所以,所以,則點到直線的距離故選:A11、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D12、B【解析】根據(jù)充分條件、必要條件、充要條件的定義依次判斷.【詳解】當時,,非充分,故A錯.當不能推出,所以非充分,,所以是必要條件,故B正確.當在中,,反之,故為充要條件,故C錯;當時,,,,充分條件,因為,當時成立,非必要條件,故D錯.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)題意,求得過點的直線截圓所得弦長的最大值和最小值,即可求得公差的最大值.【詳解】圓的圓心,半徑,設點為點,因為,故點在圓內(nèi),當直線過點,且經(jīng)過圓心時,該直線截圓所得弦長取得最大值;當直線過點,且與直線垂直時,該直線截圓所得弦長取得最小值,此時,則滿足題意的直線為,即,又,則該直線截圓所得弦長為;根據(jù)題意,要使得數(shù)列的公差最大,則,故最大公差.故答案為:.14、【解析】先求出直線的斜率取值范圍,再根據(jù)斜率與傾斜角的關系,即可求出【詳解】可化為:,所以,由于,結合函數(shù)在上的圖象,可知故答案為:【點睛】本題主要考查斜率與傾斜角的關系的應用,以及直線的一般式化斜截式,屬于基礎題15、【解析】作出該不等式表示的平面區(qū)域,由的幾何意義結合距離公式得出答案.【詳解】該不等式組表示的平面區(qū)域,如下圖所示過點作直線的垂線,垂足為因為表示原點與可行域中點之間的距離,所以的最小值為.故答案為:16、0【解析】設切點分別為,.利用導數(shù)的幾何意義可得,則.由,,計算可得,進而求得點坐標代入方程即可求得結果.【詳解】設切點分別為,由題意可得,則,即因為,,所以,即,解得,所以,則,解得故答案為:0三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)x2+y2=9(2)x2+y2=25【解析】(1)直接根據(jù)圓心坐標和半徑,即可得到答案;(2)利用兩點間的距離公式,求出圓的半徑,即可得到答案;【小問1詳解】根據(jù)題意,圓心在點O(0,0),半徑r=3,則要求圓的方程為x2+y2=9;【小問2詳解】圓心在點O(0,0),且經(jīng)過點M(3,4),要求圓的半徑r==5,則要求圓的方程為x2+y2=25;18、(1)選①:外離;選②:相切;(2)【解析】(1)不論選①還是選②,都要首先算出兩圓的圓心距,然后和兩圓的半徑之和或差進行比較即可;(2)根據(jù)點到直線的距離公式,先計算圓心到直線的距離,然后利用圓心距、半徑、弦長的一半之間的關系求解.【小問1詳解】選①圓O的圓心為,半徑為l;圓C圓心為,半徑為因為兩圓的圓心距為,且兩圓的半徑之和為,所以兩圓外離選②圓O的圓心為,半徑為1.圓C的圓心為,半徑為2因為兩圓的圓心距為.且兩圓的半徑之和為,所以兩圓外切【小問2詳解】因為點C到直線的距離,所以直線被圓C截得的弦長為19、(1)點為MC的中點,理由見解析;(2)【解析】(1)由線面垂直得到線線垂直,進而由三線合一得到點為MC的中點;(2)作出輔助線,找到二面角的平面角,利用勾股定理求出各邊長,用余弦定理求出答案.【小問1詳解】點為MC的中點,理由如下:因為平面,平面,所以,,又,由三線合一得:點為MC的中點【小問2詳解】取AB的中點H,連接PH,CH,則由(1)知:,結合點為MC的中點,所以PA=PB,故由三線合一得:PH⊥AB,且CH⊥AB,所以∠CHP即為二面角的平面角,因為,,,所以,,,由勾股定理得:,,,在△PCH中,由余弦定理得:,故二面角的余弦值為20、(1);(2).【解析】(1)以為原點,為軸,為軸,為軸,建立空間直角坐標系.可根據(jù)題意寫出各個點的坐標,進而求出平面的法向量和的坐標,點到平面的距離.計算即可求出答案.(2)由(1)知平面的法向量,在把平面的法向量表示出來,平面與平面夾角的余弦值為,計算即可求出答案.【小問1詳解】以為原點,為軸,為軸,為軸,建立如下圖所示的空間直角坐標系.由于正方體的棱長為2和,分別為線段,的中點知,.設平面的法向量為..則..故點到平面的距離.【小問2詳解】平面的法向量,平面與平面夾角的余弦值.21、(1)答案見詳解(2),證明見解析【解析】(1)求導得,,分類討論參數(shù)a的范圍即可判斷單調(diào)區(qū)間;(2)設,,聯(lián)立整理得,構造得,構造函數(shù),結合導數(shù)判斷單調(diào)性,進而得證.小問1詳解】由,,可得,當時,,所以在上單調(diào)遞增;當時,令,得,令,得所以在單調(diào)遞減,在單調(diào)遞增;【小問2詳解】證明:因為函數(shù)有兩個零點,由(1)得,此時的遞增區(qū)間為,遞減區(qū)間為,有極小值.所以,可得,所以.由(1)可得的極小值點為,則不妨設.設,,則則,即,整理得,所以,設,則,所以在上單調(diào)遞減,所以,所以,即.22、(1);(2)沒有.【解析】(1)設機器鼠位置為點,由題意可得,即,可得的軌跡為以、為焦點的雙曲線的右支,分析取值,即得解雙曲線的方程,由可得P點坐標.(2)轉(zhuǎn)化機器鼠與直線最近的距離為與直線平行的直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論