版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省榆林市第十二中學2026屆高三數學第一學期期末達標測試試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過圓外一點引圓的兩條切線,則經過兩切點的直線方程是().A. B. C. D.2.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.3.對于定義在上的函數,若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數 B.在上是增函數C.不是函數的最小值 D.對于,都有4.如圖,在棱長為4的正方體中,E,F,G分別為棱AB,BC,的中點,M為棱AD的中點,設P,Q為底面ABCD內的兩個動點,滿足平面EFG,,則的最小值為()A. B. C. D.5.已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標準方程為()A. B. C. D.6.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形7.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.8.已知函數的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.9.圓心為且和軸相切的圓的方程是()A. B.C. D.10.已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.11.已知復數滿足,則()A. B. C. D.12.已知函數,則的值等于()A.2018 B.1009 C.1010 D.2020二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎.在比賽結果揭曉之前,四人的猜測如下表,其中“√”表示猜測某人獲獎,“×”表示猜測某人未獲獎,而“○”則表示對某人是否獲獎未發(fā)表意見.已知四個人中有且只有兩個人的猜測是正確的,那么兩名獲獎者是_______.甲獲獎乙獲獎丙獲獎丁獲獎甲的猜測√××√乙的猜測×○○√丙的猜測×√×√丁的猜測○○√×14.在平面直角坐標系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.15.的展開式中所有項的系數和為______,常數項為______.16.袋中裝有兩個紅球、三個白球,四個黃球,從中任取四個球,則其中三種顏色的球均有的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若數列滿足:對于任意,均為數列中的項,則稱數列為“數列”.(1)若數列的前項和,,試判斷數列是否為“數列”?說明理由;(2)若公差為的等差數列為“數列”,求的取值范圍;(3)若數列為“數列”,,且對于任意,均有,求數列的通項公式.18.(12分)如圖,在直角梯形中,,,,為的中點,沿將折起,使得點到點位置,且,為的中點,是上的動點(與點,不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.19.(12分)已知函數.(1)若,求函數的單調區(qū)間;(2)若恒成立,求實數的取值范圍.20.(12分)已知函數,,使得對任意兩個不等的正實數,都有恒成立.(1)求的解析式;(2)若方程有兩個實根,且,求證:.21.(12分)如圖,在三棱柱中,是邊長為2的菱形,且,是矩形,,且平面平面,點在線段上移動(不與重合),是的中點.(1)當四面體的外接球的表面積為時,證明:.平面(2)當四面體的體積最大時,求平面與平面所成銳二面角的余弦值.22.(10分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】過圓外一點,引圓的兩條切線,則經過兩切點的直線方程為,故選.2、A【解析】
由正弦定理化簡已知等式可得,結合,可得,結合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點睛】本題主要考查了正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.3、B【解析】
根據函數對稱性和單調性的關系,進行判斷即可.【詳解】由得關于對稱,若關于對稱,則函數在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數,在在上是增函數,則為函數的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【點睛】本題主要考查函數性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵.4、C【解析】
把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【詳解】如圖,分別取的中點,連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內的部分)上,顯然關于直線的對稱點為,,當且僅當共線時取等號,∴所求最小值為.故選:C.【點睛】本題考查空間距離的最小值問題,解題時作出正方體的完整截面求出點軌跡是第一個難點,第二個難點是求出點軌跡,第三個難點是利用對稱性及圓的性質求得最小值.5、B【解析】
由拋物線的定義轉化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點M到其焦點F的距離比點M到y(tǒng)軸的距離大,根據拋物線的定義可得,,所以拋物線的標準方程為:y2=2x.故選B.【點睛】本題考查了拋物線的簡單性質的應用,拋物線方程的求法,屬于基礎題.6、B【解析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點睛】本題主要考查了對數的運算性質的應用,兩角差的正弦公式的應用,解題的關鍵是靈活利用基本公式,屬于基礎題.7、D【解析】
根據雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎題.8、A【解析】
畫出函數的圖像,函數對稱軸方程為,由圖可得與關于對稱,即得解.【詳解】函數的圖像如圖,對稱軸方程為,,又,由圖可得與關于對稱,故選:A【點睛】本題考查了正弦型函數的對稱性,考查了學生綜合分析,數形結合,數學運算的能力,屬于中檔題.9、A【解析】
求出所求圓的半徑,可得出所求圓的標準方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎題.10、A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設過點F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯立,可得交點M(,﹣),∵點M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于a,b,c的方程或不等式,再根據a,b,c的關系消掉b得到a,c的關系式,建立關于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.11、A【解析】
由復數的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復數的運算.屬于簡單題.12、C【解析】
首先,根據二倍角公式和輔助角公式化簡函數解析式,根據所求函數的周期性,得到其周期為4,然后借助于三角函數的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數的圖象與性質、三角恒等變換等知識,掌握輔助角公式化簡函數解析式是解題的關鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、乙、丁【解析】
本題首先可根據題意中的“四個人中有且只有兩個人的猜測是正確的”將題目分為四種情況,然后對四種情況依次進行分析,觀察四人所猜測的結果是否沖突,最后即可得出結果.【詳解】從表中可知,若甲猜測正確,則乙,丙,丁猜測錯誤,與題意不符,故甲猜測錯誤;若乙猜測正確,則依題意丙猜測無法確定正誤,丁猜測錯誤;若丙猜測正確,則丁猜測錯誤;綜上只有乙,丙猜測不矛盾,依題意乙,丙猜測是正確的,從而得出乙,丁獲獎.所以本題答案為乙、丁.【點睛】本題是一個簡單的合情推理題,能否根據“四個人中有且只有兩個人的猜測是正確的”將題目所給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關鍵,考查推理能力,是簡單題.14、3【解析】
雙曲線的焦點在軸上,漸近線為,結合漸近線方程為可求.【詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應形式是求解的關鍵,側重考查數學運算的核心素養(yǎng).15、3-260【解析】
(1)令求得所有項的系數和;(2)先求出展開式中的常數項與含的系數,再求展開式中的常數項.【詳解】將代入,得所有項的系數和為3.因為的展開式中含的項為,的展開式中含常數項,所以的展開式中的常數項為.故答案為:3;-260【點睛】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎題.16、【解析】
基本事件總數n126,其中三種顏色的球都有包含的基本事件個數m72,由此能求出其中三種顏色的球都有的概率.【詳解】解:袋中有2個紅球,3個白球和4個黃球,從中任取4個球,基本事件總數n126,其中三種顏色的球都有,可能是2個紅球,1個白球和1個黃球或1個紅球,2個白球和1個黃球或1個紅球,1個白球和2個黃球,所以包含的基本事件個數m72,∴其中三種顏色的球都有的概率是p.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)不是,見解析(2)(3)【解析】
(1)利用遞推關系求出數列的通項公式,進一步驗證時,是否為數列中的項,即可得答案;(2)由題意得,再對公差進行分類討論,即可得答案;(3)由題意得數列為等差數列,設數列的公差為,再根據不等式得到公差的值,即可得答案;【詳解】(1)當時,又,所以.所以當時,,而,所以時,不是數列中的項,故數列不是為“數列”(2)因為數列是公差為的等差數列,所以.因為數列為“數列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數列中的項.②若,則.此時,當時,不為正整數,所以不符合題意.綜上,.(3)由題意,所以,又因為,且數列為“數列”,所以,即,所以數列為等差數列.設數列的公差為,則有,由,得,整理得,①.②若,取正整數,則當時,,與①式對應任意恒成立相矛盾,因此.同樣根據②式可得,所以.又,所以.經檢驗當時,①②兩式對應任意恒成立,所以數列的通項公式為.【點睛】本題考查數列新定義題、等差數列的通項公式,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度較大.18、(Ⅰ)見解析(Ⅱ)存在,此時為的中點.【解析】
(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設存在點滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設,,計算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設存在點滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設,則,在中,設(),由得,即,得,∴,依題意知,即,解得,此時為的中點.綜上知,存在點,使得二面角的余弦值,此時為的中點.【點睛】本題考查了面面垂直,根據二面角確定點的位置,意在考查學生的空間想象能力和計算能力,也可以建立空間直角坐標系解得答案.19、(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)將代入函數的解析式,利用導數可得出函數的單調區(qū)間;(2)求函數的導數,分類討論的范圍,利用導數分析函數的單調性,求出函數的最值可判斷是否恒成立,可得實數的取值范圍.【詳解】(1)當時,,則,當時,,則,此時,函數為減函數;當時,,則,此時,函數為增函數.所以,函數的增區(qū)間為,減區(qū)間為;(2),則,.①當時,即當時,,由,得,此時,函數為增函數;由,得,此時,函數為減函數.則,不合乎題意;②當時,即時,.不妨設,其中,令,則或.(i)當時,,當時,,此時,函數為增函數;當時,,此時,函數為減函數;當時,,此時,函數為增函數.此時,而,構造函數,,則,所以,函數在區(qū)間上單調遞增,則,即當時,,所以,.,符合題意;②當時,,函數在上為增函數,,符合題意;③當時,同理可得函數在上單調遞增,在上單調遞減,在上單調遞增,此時,則,解得.綜上所述,實數的取值范圍是.【點睛】本題考查導數知識的運用,考查函數的單調性與最值,考查恒成立問題,正確求導和分類討論是關鍵,屬于難題.20、(1);(2)證明見解析.【解析】
(1)根據題意,在上單調遞減,求導得,分類討論的單調性,結合題意,得出的解析式;(2)由為方程的兩個實根,得出,,兩式相減,分別算出和,利用換元法令和構造函數,根據導數研究單調性,求出,即可證出結論.【詳解】(1)根據題意,對任意兩個不等的正實數,都有恒成立.則在上單調遞減,因為,當時,在內單調遞減.,當時,由,有,此時,當時,單調遞減,當時,單調遞增,綜上,,所以.(2)由為方程的兩個實根,得,兩式相減,可得,因此,令,由,得,則,構造函數.則,所以函數在上單調遞增,故,即,可知,故,命題得證.【點睛】本題考查利用導數研究函數的單調性求函數的解析式、以及利用構造函數法證明不等式,考查轉化思想、解題分析能力和計算能力.21、(1)證明見解析(2)【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中學生安全課件
- 內蒙古2025年內蒙古二連浩特市事業(yè)單位引進急需緊缺人才筆試歷年典型考點題庫附帶答案詳解
- 佛山廣東佛山市禪城區(qū)南莊鎮(zhèn)溶洲小學招聘臨聘教師筆試歷年備考題庫附帶答案詳解
- 交城縣2025山西眾恒信達人力資源服務有限公司招聘派駐交城縣部分單位政府購買服務筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 云南省2025云南藝術學院公開招聘博士人員(35人)筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 云南省2025云南普洱學院招聘博士人員12人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 云南2025年福貢縣交通運輸局招募交通工程“銀齡工程師”筆試歷年備考題庫附帶答案詳解
- 云南2025年上半年云南水利水電職業(yè)學院招聘52人筆試歷年??键c試題專練附帶答案詳解
- 烏蘭察布市2025內蒙古烏蘭察布市四子王旗高層次和緊缺急需人才引進46人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 臨沂市2025年山東臨沂職業(yè)學院公開招聘教師和教輔人員(16名)筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 2023年同濟大學課程考試試卷A卷
- 《我們?yōu)槭裁匆獙W習》的主題班會
- 2021工程總承包項目文件收集與檔案整理規(guī)范第4部分:水力發(fā)電工程
- 雨水收集池開挖方案
- 醫(yī)療專項工程EPC建設模式解析-講座課件PPT
- 廣西財經學院輔導員考試題庫
- 河道清淤工程施工組織計劃
- 用電信息采集終端
- GB/T 250-2008紡織品色牢度試驗評定變色用灰色樣卡
- GA/T 947.4-2015單警執(zhí)法視音頻記錄系統(tǒng)第4部分:數據接口
- 隱身技術概述課件
評論
0/150
提交評論