2026屆廣東省廣州市增城區(qū)四校數(shù)學(xué)高一上期末檢測模擬試題含解析_第1頁
2026屆廣東省廣州市增城區(qū)四校數(shù)學(xué)高一上期末檢測模擬試題含解析_第2頁
2026屆廣東省廣州市增城區(qū)四校數(shù)學(xué)高一上期末檢測模擬試題含解析_第3頁
2026屆廣東省廣州市增城區(qū)四校數(shù)學(xué)高一上期末檢測模擬試題含解析_第4頁
2026屆廣東省廣州市增城區(qū)四校數(shù)學(xué)高一上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆廣東省廣州市增城區(qū)四校數(shù)學(xué)高一上期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),則A. B.0C.1 D.2.已知函數(shù)為偶函數(shù),則A.2 B.C. D.3.設(shè),且,則()A. B.C. D.4.函數(shù)的零點所在區(qū)間為()A. B.C. D.5.已知冪函數(shù)的圖像過點,則下列關(guān)于說法正確的是()A.奇函數(shù) B.偶函數(shù)C.定義域為 D.在單調(diào)遞減6.函數(shù)f(x)=A.(-2-1) B.(-1,0)C.(0,1) D.(1,2)7.圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,則圓臺較小底面的半徑為()A.7 B.6C.5 D.38.在中,角、、的對邊分別為、、,已知,,,則A. B.C. D.9.“”是“”成立的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知函數(shù)的定義域為,則函數(shù)的定義域為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)在上的最大值為2,則_________12.已知角的終邊過點,則______13.已知函數(shù),.(1)若函數(shù)的值域為R,求實數(shù)m的取值范圍;(2)若函數(shù)是函數(shù)的反函數(shù),當(dāng)時,函數(shù)的最小值為,求實數(shù)m的值;(3)用表示m,n中的最大值,設(shè)函數(shù),有2個零點,求實數(shù)m的范圍.14.計算的結(jié)果是_____________15.請寫出一個最小正周期為,且在上單調(diào)遞增的函數(shù)__________16.已知,則____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),,設(shè)(其中表示中的較小者).(1)在坐標(biāo)系中畫出函數(shù)的圖像;(2)設(shè)函數(shù)的最大值為,試判斷與1的大小關(guān)系,并說明理由.(參考數(shù)據(jù):,,)18.設(shè)1若對任意恒成立,求實數(shù)m的取值范圍;2討論關(guān)于x的不等式的解集19.將函數(shù)(且)的圖象向左平移1個單位,再向上平移2個單位,得到函數(shù)的圖象,(1)求函數(shù)的解析式;(2)設(shè)函數(shù),若對一切恒成立,求實數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有且僅有一個零點,求實數(shù)的取值范圍.20.已知.(1)求的值(2)求的值.21.已知函數(shù)的圖象過點,且滿足(1)求函數(shù)的解析式:(2)求函數(shù)在上最小值;(3)若滿足,則稱為函數(shù)的不動點,函數(shù)有兩個不相等且正的不動點,求t的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)自變量所在的范圍先求出,然后再求出【詳解】由題意得,∴故選C【點睛】根據(jù)分段函數(shù)的解析式求函數(shù)值時,首先要分清自變量所屬的范圍,然后再代入解析式后可得結(jié)果,屬于基礎(chǔ)題2、A【解析】由偶函數(shù)的定義,求得的解析式,再由對數(shù)的恒等式,可得所求,得到答案【詳解】由題意,函數(shù)為偶函數(shù),可得時,,,則,,可得,故選A【點睛】本題主要考查了分段函數(shù)的運用,函數(shù)的奇偶性的運用,其中解答中熟練應(yīng)用對數(shù)的運算性質(zhì),正確求解集合A,再根據(jù)集合的運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、D【解析】根據(jù)同角三角函數(shù)的基本關(guān)系,兩角和的正弦公式,即可得到答案;詳解】,,,,故選:D4、B【解析】根據(jù)零點存在性定理即可判斷求解.【詳解】∵f(x)定義域為R,且f(x)在R上單調(diào)遞增,又∵f(1)=-10<0,f(2)=19>0,∴f(x)在(1,2)上存在唯一零點.故選:B.5、D【解析】設(shè)出冪函數(shù)的解析式,將所過點坐標(biāo)代入,即可求出該函數(shù).再根據(jù)冪函數(shù)的性質(zhì)的結(jié)論,選出正確選項.【詳解】設(shè)冪函數(shù)為,因為函數(shù)過點,所以,則,所以,該函數(shù)定義域為,則其既不是奇函數(shù)也不是偶函數(shù),且由可知,該冪函數(shù)在單調(diào)遞減.故選:D.6、C【解析】,所以零點在區(qū)間(0,1)上考點:零點存在性定理7、A【解析】設(shè)圓臺上底面半徑為,由圓臺側(cè)面積公式列出方程,求解即可得解.【詳解】設(shè)圓臺上底面半徑為,由題意下底面半徑為,母線長,所以,解得.故選:A.【點睛】本題考查了圓臺側(cè)面積公式的應(yīng)用,屬于基礎(chǔ)題.8、B【解析】分析:直接利用余弦定理求cosA.詳解:由余弦定理得cosA=故答案為B.點睛:(1)本題主要考查余弦定理在解三角形中的應(yīng)用,意在考查學(xué)生對余弦定理的掌握水平.(2)已知三邊一般利用余弦定理:.9、B【解析】解出不等式,進而根據(jù)不等式所對應(yīng)集合間的關(guān)系即可得到答案.【詳解】由,而是的真子集,所以“”是“”成立的必要不充分條件.故選:B.10、B【解析】根據(jù)函數(shù)的定義域求出的范圍,結(jié)合分母不為0求出函數(shù)的定義域即可【詳解】由題意得:,解得:,由,解得:,故函數(shù)的定義域是,故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】先求導(dǎo)可知原函數(shù)在上單調(diào)遞增,求出參數(shù)后即可求出.【詳解】解:在上在上單調(diào)遞增,且當(dāng)取得最大值,可知故答案為:112、【解析】根據(jù)三角函數(shù)的定義求出r即可.【詳解】角的終邊過點,,則,故答案為【點睛】本題主要考查三角函數(shù)值的計算,根據(jù)三角函數(shù)的定義是解決本題的關(guān)鍵.三角函數(shù)的定義將角的終邊上的點的坐標(biāo)和角的三角函數(shù)值聯(lián)系到一起,.知道終邊上的點的坐標(biāo)即可求出角的三角函數(shù)值,反之也能求點的坐標(biāo).13、(1)(2)(3)【解析】(1)函數(shù)的值域為R,可得,求解即可;(2)設(shè)分類論可得m的值;(3)對m分類討論可得結(jié)論.【小問1詳解】值域為R,∴【小問2詳解】,.設(shè),,①若即時,,②若,即時,,舍去③若即時,,無解,舍去綜上所示:【小問3詳解】①顯然,當(dāng)時,在無零點,舍去②當(dāng)時,,舍去③時,解分別為,,只需控制,不要均大于等于1即可Ⅰ:,,,舍去Ⅱ:,無解,綜上:14、.【解析】根據(jù)對數(shù)的運算公式,即可求解.【詳解】根據(jù)對數(shù)的運算公式,可得.故答案為:.15、或(不唯一).【解析】根據(jù)函數(shù)最小正周期為,可構(gòu)造正弦型、余弦型或者正切型函數(shù),再結(jié)合在上單調(diào)遞增,構(gòu)造即可.【詳解】解:根據(jù)函數(shù)最小正周期為,可構(gòu)造正弦型、余弦型或者正切型函數(shù),再結(jié)合在上單調(diào)遞增,構(gòu)造即可,如或滿足題意故答案為:或(不唯一).16、【解析】求得函數(shù)的最小正周期為,進而計算出的值(其中),再利用周期性求解即可.【詳解】函數(shù)的最小正周期為,當(dāng)時,,,,,,,所以,,,因此,.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解析】(1)根據(jù)(其中表示中的較小者),即可畫出函數(shù)的圖像;(2)由題意可知,為函數(shù)與圖像交點的橫坐標(biāo),即,設(shè),根據(jù)零點存在定理及函數(shù)在上單調(diào)遞增,且為連續(xù)曲線,可得有唯一零點,再由函數(shù)在上單調(diào)遞減,即可得證.試題解析:(1)作出函數(shù)的圖像如下:(2)由題意可知,為函數(shù)與圖像交點的橫坐標(biāo),且,∴.設(shè),易知即為函數(shù)零點,∵,,∴,又∵函數(shù)在上單調(diào)遞增,且為連續(xù)曲線,∴有唯一零點∵函數(shù)在上單調(diào)遞減,∴,即.18、(1);(2)見解析.【解析】1由題意可得對恒成立,即有的最小值,運用基本不等式可得最小值,即可得到所求范圍;2討論判別式小于等于0,以及判別式大于0,由二次函數(shù)的圖象可得不等式的解集【詳解】1由題意,若對任意恒成立,即為對恒成立,即有的最小值,由,可得時,取得最小值2,可得;2當(dāng),即時,的解集為R;當(dāng),即或時,方程的兩根為,,可得的解集為【點睛】本題主要考查了不等式的恒成立問題,以及一元二次不等式的解法,注意運用轉(zhuǎn)化思想和分類討論思想方法,考查運算能力,屬于中檔題19、(1)(2)(3)【解析】(1)由圖象的平移特點可得所求函數(shù)的解析式;(2)求得的解析式,可得對一切恒成立,再由二次函數(shù)的性質(zhì)可得所求范圍;(3)將化簡為,由題意可得只需在區(qū)間,,上有唯一解,利用圖象,數(shù)形結(jié)合求得答案.【小問1詳解】將函數(shù)且的圖象向左平移1個單位,得到的圖象,再向上平移2個單位,得到函數(shù)的圖象,即:;【小問2詳解】函數(shù),,若對一切恒成立,則對一切恒成立,由在遞增,可得,所以,即的取值范圍是,;【小問3詳解】關(guān)于的方程且,故函數(shù)在區(qū)間上有且僅有一個零點,等價于在區(qū)間上有唯一解,作出函數(shù)且的圖象,如圖示:當(dāng)時,方程的解有且只有1個,故實數(shù)p的取值范圍是.20、(1)(2)【解析】(1)由兩邊平方可得,利用同角關(guān)系;(2)由(1)可知從而.【詳解】(1)∵.∴,即,(2)由(1)知<0,又∴∴【點睛】本題考查三角函數(shù)化簡求值,涉及同角三角函數(shù)基本關(guān)系和整體代入的思想,屬于中檔題21、(1);(2);(3).【解析】(1)根據(jù)f(x)圖像過點,且滿足列出關(guān)于m和n的方程組即可求解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論