版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆山東省新泰市第二中學高二上數(shù)學期末檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角A,B,C所對的邊分別為a,b,c,若,,的面積為10,則的值為()A. B.C. D.2.已知函數(shù),若,則等于()A. B.1C.ln2 D.e3.某校去年有1100名同學參加高考,從中隨機抽取50名同學總成績進行分析,在這個調查中,下列敘述錯誤的是A.總體是:1100名同學的總成績 B.個體是:每一名同學C.樣本是:50名同學的總成績 D.樣本容量是:504.若雙曲線(,)的一條漸近線經過點,則雙曲線的離心率為()A. B.C. D.25.拋物線型太陽灶是利用太陽能輻射的一種裝置.當旋轉拋物面的主光軸指向太陽的時候,平行的太陽光線入射到旋轉拋物面表面,經過反光材料的反射,這些反射光線都從它的焦點處通過,形成太陽光線的高密集區(qū),拋物面的焦點在它的主光軸上.如圖所示的太陽灶中,灶深CD即焦點到灶底(拋物線的頂點)的距離為1m,則灶口直徑AB為()A.2m B.3mC.4m D.5m6.在四面體OABC中,點M在線段OA上,且,N為BC中點,已知,,,則等于()A. B.C. D.7.如圖所示,已知是橢圓的左、右焦點,為橢圓的上頂點,在軸上,,且是的中點,為坐標原點,若點到直線的距離為3,則橢圓的方程為()A B.C. D.8.在條件下,目標函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.809.在平面區(qū)域內隨機投入一點P,則點P的坐標滿足不等式的概率是()A. B.C. D.10.在長方體中,若,,則異而直線與所成角的余弦值為()A. B.C. D.11.某研究所為了研究近幾年中國留學生回國人數(shù)的情況,對2014至2018年留學生回國人數(shù)進行了統(tǒng)計,數(shù)據(jù)如下表:年份20142015201620172018年份代碼12345留學生回國人數(shù)/萬36.540.943.348.151.9根據(jù)上述統(tǒng)計數(shù)據(jù)求得留學生回國人數(shù)(單位:萬)與年份代碼滿足的線性回歸方程為,利用回歸方程預測年留學生回國人數(shù)為()A.63.14萬 B.64.72萬C.66.81萬 D.66.94萬12.已知方程表示焦點在軸上的橢圓,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則_________14.將由2,5,8,11,14,…組成的等差數(shù)列,按順序寫在練習本上,已知每行寫13個,每頁有21行,則5555在第______頁第______行.(用數(shù)字作答)15.已知空間向量,則使成立的x的值為___________16.已知直線與圓交于兩點,則面積的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在長方體中,,.點E在上,且(1)求證:平面;(2)求二面角的余弦值18.(12分)已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為(1)求橢圓的方程;(2)設直線與橢圓相交于不同的兩點,已知點的坐標為,若,求直線的方程19.(12分)已知拋物線的焦點到準線的距離為2.(1)求C的方程:(2)過C上一動點P作圓兩條切線,切點分別為A,B,求四邊形PAMB面積的最小值.20.(12分)(1)已知:方程表示雙曲線;:關于的不等式有解.若為真,求的取值范圍;(2)已知,,.若p是q的必要不充分條件,求實數(shù)m的取值范圍.21.(12分)已知函數(shù)(Ⅰ)討論函數(shù)的極值點的個數(shù)(Ⅱ)若,,求的取值范圍22.(10分)已知點F為拋物線:()的焦點,點在拋物線上且在x軸上方,.(1)求拋物線的方程;(2)已知直線與曲線交于A,B兩點(點A,B與點P不重合),直線PA與x軸、y軸分別交于C、D兩點,直線PB與x軸、y軸分別交于M、N兩點,當四邊形CDMN的面積最小時,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由同角公式求出,根據(jù)三角形面積公式求出,根據(jù)余弦定理求出,根據(jù)正弦定理求出.【詳解】因為,所以,因為,的面積為10,所以,故,從而,解得,由正弦定理得:.故選:A.【點睛】本題考查了同角公式,考查了三角形的面積公式,考查了余弦定理,考查了正弦定理,屬于基礎題.2、D【解析】求導,由得出.【詳解】,故選:D3、B【解析】采用逐一驗證法,根據(jù)總體,個體,樣本的概念,可得結果.【詳解】據(jù)題意:總體是1100名同學的總成績,故A正確個體是每名同學的總成績,故B錯樣本是50名同學的總成績,故C正確樣本容量是:50,故D正確故選:B【點睛】本題考查總體,個體,樣本的概念,屬基礎題.4、A【解析】先求出漸近線方程,進而將點代入直線方程得到a,b關系,進而求出離心率.【詳解】由題意,雙曲線的漸近線方程為:,而一條漸近線過點,則,.故選:A.5、C【解析】建立如圖所示的平面直角坐標系,設拋物線的方程為,根據(jù)是拋物線的焦點,求得拋物線的方程,進而求得的長.【詳解】由題意,建立如圖所示的平面直角坐標系,O與C重合,設拋物線的方程為,由題意可得是拋物線的焦點,即,可得,所以拋物線的方程為,當時,,所以.故選:C.6、B【解析】根據(jù)空間向量基本定理結合已知條件求解【詳解】因為N為BC中點,所以,因為M在線段OA上,且,所以,所以,故選:B7、D【解析】由題設可得,直線的方程為,點線距離公式表示到直線的距離,又聯(lián)立解得即可得出答案.【詳解】且,則△是等邊三角形,設,則①,∴直線方程為,即,∴到直線的距離為②,又③,聯(lián)立①②③,解得,,故橢圓方程為.故選:D.8、C【解析】首先畫出可行域,找到最優(yōu)解,得到關系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標函數(shù)取最大值時必過N點,則則(當且僅當時等號成立)故選:C9、A【解析】根據(jù)題意作出圖形,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】根據(jù)題意作出示意圖,如圖所示:于,所求概率.故選:A.10、C【解析】通過平移把異面直線平移到同一平面中,所以取,的中點,易知且過中心點,所以異而直線與所成角為和所成角,通過解三角形即可得解.【詳解】根據(jù)長方體的對稱性可得體對角線過中心點,取,的中點,易知且過中心點,所以異而直線和所成角為和所成角,連接,在中,,,,所以則異而直線與所成角的余弦值為:,故選:C.11、D【解析】先求出樣本點的中心,代入線性回歸方程即可求出,再將代入線性回歸方程即可得到結果【詳解】由題意知:,,所以樣本點的中心為,所以,解得:,可得線性回歸方程為,年對應的年份代碼為,令,則,所以預測2022年留學生回國人數(shù)為66.94萬,故選:D.12、D【解析】根據(jù)已知條件可得出關于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】因為方程表示焦點在軸上的橢圓,則,解得.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用函數(shù)的解析式由內到外逐層計算可得的值.【詳解】,,因此,.故答案為:.14、①.7②.17【解析】首先求出等差數(shù)列的通項公式,即可得到為第項,再根據(jù)每行每頁的項數(shù)計算可得;【詳解】解:由2,5,8,11,14,…組成的等差數(shù)列的通項公式為,令,解得又,,.所以555在第7頁第17行故答案為:;15、##【解析】利用空間向量垂直的坐標表示列方程求參數(shù)x的值.【詳解】由題設,,可得.故答案為:.16、##【解析】先求出的范圍,再利用面積公式可求面積的最大值.【詳解】圓即為,直線為過原點的直線,如圖,連接,故,解得,此時,故的面積為,當且僅當時等號成立,此時即,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,分別寫出,,的坐標,證明,,即可得證;(2)由(1)知,的法向量為,直接寫出平面法向量,按照公式求解即可.【小問1詳解】在長方體中,以為坐標原點,所在直線分別為軸,軸,軸建立如圖所示空間直角坐標系因為,,所以,,,,,則,,,所以有,,則,,又所以平面小問2詳解】由(1)知平面的法向量為,而平面法向量為所以,由圖知二面角為銳二面角,所以二面角的余弦值為18、(1)(2)【解析】(1)由離心率公式以及橢圓的性質列出方程組得出橢圓的方程;(2)聯(lián)立直線和橢圓方程,利用韋達定理得出點坐標,最后由距離公式得出直線的方程【小問1詳解】由題意可得,得,,橢圓;【小問2詳解】設,,直線為由,得顯然,由韋達定理有:,則;所以,且,若,解得,所以19、(1)(2)【解析】(1)根據(jù)拋物線方程求出交點坐標和準線方程,求出p即可;(2)設,利用兩點坐標求距離公式求出,根據(jù)四邊形PAMB的面積得到關于的二次函數(shù),結合二次函數(shù)的性質即可得出結果.【小問1詳解】因為C的焦點為,準線為,由題意得,即,因此.【小問2詳解】圓M的圓心為,半徑為1.由條件可知,,且,于是.設,則.當時等號成立,所以四邊形PAMB面積的最小值為.20、(1)1m2;(2)(0,1]【解析】(1)由pq為真,可得p真且q假,然后分別求出p真,q假時的的取值范圍,再求交集即可,(2)求得p:1x2,再由p是q的必要不充分條件,得,解不等式組可求得答案【詳解】(1)因為pq為真,所以p真且q假,p真:m1m301m3,q假,則不等式無解,則402m2,所以1m2.(2)依題意,p:1x2,因p是q的必要不充分條件,于是得(不同時取等號),解得0m1,所以實數(shù)m的取值范圍是(0,1].21、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三種情況討論,求得函數(shù)的單調性,結合極值的概念,即可求解;(Ⅱ)由不等式,轉化為當時,不等式恒成立,設,利用導數(shù)求得函數(shù)的單調性與最值,即可求解.【詳解】(Ⅰ)由題意,函數(shù)的定義域為,且,當時,令,解得,令,解得或,故在上單調遞減,在,上單調遞增,所以有一個極值點;當時,令,解得或,令,得,故在,上單調遞減,在上單調遞增,所以有一個極值點;當時,上單調遞增,在上單調遞減,所以沒有極值點綜上所述,當時,有個極值點;當時,沒有極值點.(Ⅱ)由,即,可得,即當時,不等式恒成立,設,則設,則因為,所以,所以在上單調遞增,所以,所以在上單調遞減,在上單調遞增,所以,所以所以的取值范圍是.【點睛】對于利用導數(shù)研究不等式的恒成立問題的求解策略:1、通常要構造新函數(shù),利用導數(shù)研究函數(shù)的單調性,求出最值,從而求出參數(shù)的取值范圍;2、利用可分離變量,構造新函數(shù),直接把問題轉化為函數(shù)的最值問題3、根據(jù)恒成求解參數(shù)的取值時,一般涉及分類參數(shù)法,但壓軸試題中很少碰到分離參數(shù)后構造的新函數(shù)能直接求出最值點的情況,通常要設出導數(shù)的零點,難度較大.22、(1);(2)或.【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療器械銷售合同:醫(yī)療器械銷售協(xié)議醫(yī)療器械銷售協(xié)議醫(yī)療器械銷售協(xié)議
- 2026年工字軌項目營銷方案
- 2025年四川省資陽市中考數(shù)學真題卷含答案解析
- 2026年廣西西寧市高三一模高考語文試卷試題(含答案詳解)
- 2025年麻醉科麻醉操作流程規(guī)范模擬考試試題及答案解析
- 2025年低壓電工復審必考題庫及答案
- 2026年保密工作總結
- 現(xiàn)場隱患排查與治理
- 2025年不動產登記代理人考試題目及答案
- 某鋼結構廠房防火涂料施工方案
- 復方蒲公英注射液在銀屑病中的應用研究
- 住培中醫(yī)病例討論-面癱
- 設備安裝施工方案范本
- 衛(wèi)生院副院長先進事跡材料
- 復發(fā)性抑郁癥個案查房課件
- 網絡直播創(chuàng)業(yè)計劃書
- 人類學概論(第四版)課件 第1、2章 人類學要義第一節(jié)何為人類學、人類學的理論發(fā)展過程
- 《功能性食品學》第七章-輔助改善記憶的功能性食品
- 幕墻工程竣工驗收報告2-2
- 1、工程竣工決算財務審計服務項目投標技術方案
- 改進維持性血液透析患者貧血狀況PDCA
評論
0/150
提交評論