2026屆廣東省揭陽市揭西河婆中學高二上數(shù)學期末統(tǒng)考模擬試題含解析_第1頁
2026屆廣東省揭陽市揭西河婆中學高二上數(shù)學期末統(tǒng)考模擬試題含解析_第2頁
2026屆廣東省揭陽市揭西河婆中學高二上數(shù)學期末統(tǒng)考模擬試題含解析_第3頁
2026屆廣東省揭陽市揭西河婆中學高二上數(shù)學期末統(tǒng)考模擬試題含解析_第4頁
2026屆廣東省揭陽市揭西河婆中學高二上數(shù)學期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆廣東省揭陽市揭西河婆中學高二上數(shù)學期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知:,直線l:,M為直線l上的動點,過點M作的切線MA,MB,切點為A,B,則四邊形MACB面積的最小值為()A.1 B.2C. D.42.已知為等差數(shù)列,為其前n項和,,則下列和與公差無關的是()A. B.C. D.3.在正方體中,為棱的中點,則異面直線與所成角的正切值為A. B.C. D.4.已知函數(shù)(是的導函數(shù)),則()A.21 B.20C.16 D.115.過橢圓的左焦點作弦,則最短弦的長為()A. B.2C. D.46.已知函數(shù)的導函數(shù)滿足,則()A. B.C.3 D.47.如圖,在三棱錐中,,,,點在平面內,且,設異面直線與所成角為,則的最大值為()A. B.C. D.8.已知集合,,則中元素的個數(shù)為()A.3 B.2C.1 D.09.設為可導函數(shù),且滿足,則曲線在點處的切線的斜率是A. B.C. D.10.如圖,在四面體中,,,,,為線段的中點,則等于()A B.C. D.11.設雙曲線的左、右頂點分別為、,左、右焦點分別為、,以為直徑的圓與雙曲線左支的一個交點為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.12.已知過點的直線與圓相切,且與直線垂直,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.牛頓迭代法又稱牛頓-拉夫遜方法,它是牛頓在17世紀提出的一種在實數(shù)集上近似求解方程根的一種方法.具體步驟如下:設r是函數(shù)y=f(x)的一個零點,任意選取x0作為r的初始近似值,作曲線y=f(x)在點(x0,f(x0))處的切線l1,設l1與x軸交點的橫坐標為x1,并稱x1為r的1次近似值;作曲線y=f(x)在點(x1,f(x1))處的切線l2,設l2與x軸交點的橫坐標為x2,并稱x2為r的2次近似值.一般的,作曲線y=f(x)在點(xn,f(xn))(n∈N)處的切線ln+1,記ln+1與x軸交點的橫坐標為xn+1,并稱xn+1為r的n+1次近似值.設f(x)=x3+x-1的零點為r,取x0=0,則r的2次近似值為________14.日常生活中的飲用水通常是經過凈化的.隨著水的純凈度的提高,所需凈化費用不斷増加.已知將噸水凈化到純凈度為時所需費用(單位:元)為.則凈化到純凈度為時所需費用的瞬時變化率是凈化到純凈度為時所需費用的瞬時變化率的___________倍,這說明,水的純凈度越高,凈化費用增加的速度越___________(填“快”或“慢”).15.已知拋物線的焦點為,過焦點的直線交拋物線與兩點,且,則拋物線的準線方程為________.16.已知雙曲線的兩條漸近線的夾角為,則_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題p:集合為空集,命題q:不等式恒成立(1)若p為真命題,求實數(shù)a的取值范圍;(2)若為真命題,為假命題,求實數(shù)a的取值范圍18.(12分)已知四邊形是空間直角坐標系中的一個平行四邊形,且,,(1)求點的坐標;(2)求平行四邊形的面積19.(12分)已知的展開式中前三項的二項式系數(shù)之和為46,(1)求n;(2)求展開式中系數(shù)最大的項20.(12分)已知直線.(1)若,求直線與直線的交點坐標;(2)若直線與直線垂直,求a的值.21.(12分)如圖所示,在四棱錐中,底面是正方形,側棱底面,,是的中點,過點作交于點.求證:(1)平面;(2)平面.22.(10分)已知雙曲線C:(a>0,b>0)的離心率為,實軸長為2.(1)求雙曲線的焦點到漸近線的距離;(2)若直線y=x+m被雙曲線C截得的弦長為,求m的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】易知四邊形MACB的面積為,然后由最小,根據(jù)與直線l:垂直求解.【詳解】:化為標準方程為:,由切線長得:,四邊形MACB的面積為,若四邊形MACB的面積最小,則最小,此時與直線l:垂直,所以,所以四邊形MACB面積的最小值,故選:B2、C【解析】依題意根據(jù)等差數(shù)列的通項公式可得,再根據(jù)等差數(shù)列前項和公式計算可得;【詳解】解:因為,所以,即,所以,,,,故選:C3、C【解析】利用正方體中,,將問題轉化為求共面直線與所成角的正切值,在中進行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設正方體邊長為,則由為棱的中點,可得,所以,則.故選C.【點睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關系,找到(或構造)所求角所在的三角形;③求出三邊或三邊比例關系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因為直線夾角為銳角,所以②對應的余弦取絕對值即為直線所成角的余弦值.4、B【解析】根據(jù)已知求出,即得解.【詳解】解:由題得,所以.故選:B5、A【解析】求出橢圓的通徑,即可得到結果【詳解】過橢圓的左焦點作弦,則最短弦的長為橢圓的通徑:故選:A6、C【解析】先對函數(shù)求導,再由,可求出的關系式,然后求【詳解】由,得,因為,所以,所以,故選:C7、D【解析】設線段的中點為,連接,過點在平面內作,垂足為點,證明出平面,然后以點為坐標原點,、、分別為、、軸的正方向建立空間直角坐標系,設,其中,且,求出的最大值,利用空間向量法可求得的最大值.【詳解】設線段的中點為,連接,,為的中點,則,,則,,同理可得,,,平面,過點在平面內作,垂足為點,因為,所以,為等邊三角形,故為的中點,平面,平面,則,,,平面,以點為坐標原點,、、分別為、、軸的正方向建立如下圖所示的空間直角坐標系,因為是邊長為的等邊三角形,為的中點,則,則、、、,由于點在平面內,可設,其中,且,從而,因為,則,所以,,故當時,有最大值,即,故,即有最大值,所以,.故選:D.【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結合圖形,作出所求空間角,再結合題中條件,解對應的三角形,即可求出結果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結果.8、B【解析】集合中的元素為點集,由題意,可知集合A表示以為圓心,為半徑的單位圓上所有點組成的集合,集合B表示直線上所有的點組成的集合,又圓與直線相交于兩點,,則中有2個元素.故選B.【名師點睛】求集合的基本運算時,要認清集合元素的屬性(是點集、數(shù)集或其他情形)和化簡集合,這是正確求解集合運算的兩個先決條件.集合中元素的三個特性中的互異性對解題影響較大,特別是含有字母的集合,在求出字母的值后,要注意檢驗集合中的元素是否滿足互異性.9、D【解析】由題,為可導函數(shù),,即曲線在點處的切線的斜率是,選D【點睛】本題考查導數(shù)的定義,切線的斜率,以及極限的運算,本題解題的關鍵是對所給的極限式進行整理,得到符合導數(shù)定義的形式10、D【解析】根據(jù)空間向量的線性運算求解【詳解】由已知,故選:D11、C【解析】據(jù)三角形中位線可得;再由雙曲線的定義求出,進而求出的面積【詳解】雙曲線的方程為:,,設以為直徑的圓與直線相切與點,則,且,,∥.又為的中點,,又,,的面積為:.故選:C12、B【解析】首先由點的坐標滿足圓的方程來確定點在圓上,然后求出過點的圓的切線方程,最后由兩直線的垂直關系轉化為斜率關系求解.【詳解】由題知,圓的圓心,半徑.因為,所以點在圓上,所以過點的圓的切線與直線垂直,設切線的斜率,則有,即,解得.因為直線與切線垂直,所以,解得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用導數(shù)的幾何意義根據(jù)r的2次近似值的定義求解即可【詳解】由,得,取,,所以過點作曲線的切線的斜率為1,所以直線的方程為,其與軸交點的橫坐標為1,即,因為,所以過點作曲線的切線的斜率為4,所以直線的方程為,其與軸交點的橫坐標為,即,故答案為:14、①.②.快【解析】根據(jù)導數(shù)的概念可知凈化所需費用的瞬時變化率即為函數(shù)的一階導數(shù),即先對函數(shù)求導,然后將和代入進行計算,再求,即可得到結果,進而能夠判斷水的純凈度越高,凈化費用增加的速度的快慢【詳解】由題意,可知凈化所需費用的瞬時變化率為,所以,,所以,所以凈化到純凈度為時所需費用的瞬時變化率是凈化到純凈度為時所需費用的瞬時變化率的倍;因為,可知水的純凈度越高,凈化費用增加的速度越快.故答案為:,快.15、【解析】根據(jù)題意作出圖形,設直線與軸的夾角為,不妨設,設拋物線的準線與軸的交點為,過點作準線與軸的垂線,垂足分別為,過點分別作準線和軸的垂線,垂足分別為,進一步可以得到,進而求出,同理求出,最后解得答案.【詳解】設直線與軸的夾角為,根據(jù)拋物線的對稱性,不妨設,如圖所示.設拋物線的準線與軸的交點為,過點作準線與軸的垂線,垂足分別為,過點分別作準線和軸的垂線,垂足分別為.由拋物線的定義可知,,同理:,于是,,則拋物線的準線方程為:.故答案為:.16、或【解析】首先判斷漸近線的傾斜角,再求的值.【詳解】由條件可知雙曲線的其中一條漸近線方程是,因為兩條漸近線的夾角是,所以直線的傾斜角是或,即或.故答案為:或三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)判別式小于0可得;(2)根據(jù)復合命題的真假可知,p和q有且只有一個真命題,然后根據(jù)相應范圍通過集合運算可得.【小問1詳解】因為集合為空集,所以無實數(shù)根,即,解得,所以p為真命題時,實數(shù)a取值范圍為.【小問2詳解】由解得:,即命題q為真時,實數(shù)a的取值范圍為,易知p為假時,a的取值范圍為,q為假時,a的取值范圍為.因為為真命題,為假命題,則p和q有且只有一個真命題,當p為假q為真時,實數(shù)a的取值范圍為;當p為真q為假時,實數(shù)a的取值范圍為.綜上,實數(shù)a的取值范圍為18、(1);(2)【解析】(1)由題設可得,結合向量的共線坐標表示求的坐標;(2)向量的坐標運算求邊長,由余弦定理求,進而求其正弦值,再應用三角形面積公式求面積.【小問1詳解】由題設,,令,則,∴,可得,故.【小問2詳解】由(1),,,則,又,則,∴平行四邊形的面積.19、(1)9(2)【解析】(1)根據(jù)要求列出方程,求出的值;(2)求出二項式展開式的通項,列出不等式組,求出的取值范圍,從而求出,得到系數(shù)最大項.【小問1詳解】由題意得:,解得:或,因為,所以(舍去),從而【小問2詳解】二項式的展開式通項為:,則系數(shù)為,要求其最大值,則只要滿足,即9!r!9-r!?2r≥9!r-1!10-r20、(1)(2)【解析】(1)聯(lián)立兩直線方程,解方程組即可得解;(2)根據(jù)兩直線垂直列出方程,解之即可得出答案.【小問1詳解】解:當時,直線,聯(lián)立,解得,即交點坐標為;【小問2詳解】解:直線與直線垂直,則,解得.21、(1)證明見解析;(2)證明見解析.【解析】(1)連結、,交于點,連結,通過即可證明;(2)通過,

可證平面,即得,進而通過平面得,結合即證.詳解】證明:(1)連結、,交于點,連結,底面正方形,∴是中點,點是的中點,.平面,

平面,∴平面.(2),點是的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論