2026屆湖北省第五屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第1頁
2026屆湖北省第五屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第2頁
2026屆湖北省第五屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第3頁
2026屆湖北省第五屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第4頁
2026屆湖北省第五屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆湖北省第五屆數(shù)學(xué)高二上期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面直角坐標系內(nèi)一動點P,滿足圓上存在一點Q使得,則所有滿足條件的點P構(gòu)成圖形的面積為()A. B.C. D.2.一質(zhì)點從出發(fā),做勻速直線運動,每秒的速度為秒后質(zhì)點所處的位置為()A. B.C. D.3.已知直線,若異面,,則的位置關(guān)系是()A.異面 B.相交C.平行或異面 D.相交或異面4.北京天壇的圜丘壇為古代祭天的場所,分上、中、下三層,上層中心有一塊圓形石板(稱為天心石),環(huán)繞天心石砌9塊扇面形石板構(gòu)成第一環(huán),向外每環(huán)依次增加9塊,下一層的第一環(huán)比上一層的最后一環(huán)多9塊,向外每環(huán)依次也增加9塊,已知每層環(huán)數(shù)相同,且下層比中層多729塊,則三層共有扇面形石板(不含天心石)()A.3699塊 B.3474塊C.3402塊 D.3339塊5.當我們停放自行車時,只要將自行車旁的撐腳放下,自行車就穩(wěn)了,這用到了()A.三點確定一平面 B.不共線三點確定一平面C.兩條相交直線確定一平面 D.兩條平行直線確定一平面6.“”是“函數(shù)在上有極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.為了了解1000名學(xué)生的學(xué)習情況,采用系統(tǒng)抽樣的方法,從中抽取容量為50的樣本,則分段的間隔為()A.20 B.25C.40 D.508.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為p(0<p<1)且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為f(p),當p=p0時,f(p)最大,則p0=()A. B.C. D.9.已知橢圓的右焦點為,則正數(shù)的值是()A.3 B.4C.9 D.2110.設(shè)函數(shù),則()A.4 B.5C.6 D.711.已知函數(shù)的導(dǎo)數(shù)為,則等于()A.0 B.1C.2 D.412.如果橢圓上一點到焦點的距離等于6,則線段的中點到坐標原點的距離等于()A.7 B.10C.12 D.14二、填空題:本題共4小題,每小題5分,共20分。13.關(guān)于曲線,則以下結(jié)論正確的個數(shù)有______個①曲線C關(guān)于原點對稱;②曲線C中,;③曲線C是不封閉圖形,且它與圓無公共點;④曲線C與曲線有4個交點,這4點構(gòu)成正方形14.函數(shù),若,則的值等于_______15.點為雙曲線上一點,為焦點,如果則雙曲線的離心率為___________.16.已知、是橢圓()長軸的兩個端點,、是橢圓上關(guān)于軸對稱的兩點,直線,的斜率分別為,().若橢圓的離心率為,則的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的準線方程是,直線與拋物線相交于M、N兩點(1)求拋物線的方程;(2)求弦長;(3)設(shè)O為坐標原點,證明:18.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,側(cè)棱底面ABCD,,,E為PB中點,F(xiàn)為PC上一點,且(1)求證:;(2)求平面DEF與平面ABCD所成銳二面角的余弦值19.(12分)物聯(lián)網(wǎng)(Internetofthings)是一個基于互聯(lián)網(wǎng)、傳統(tǒng)電信網(wǎng)等信息承載體,讓所有能夠被獨立尋址的普通物理對象實現(xiàn)互聯(lián)互通的網(wǎng)絡(luò),具有十分廣闊的市場前景.現(xiàn)有一家物流公司計劃租地建造倉庫存儲貨物,經(jīng)過市場調(diào)查了解到下列信息:倉庫每月土地占地費(單位:萬元)與倉庫到車站的距離x(單位:千米)之間的關(guān)系為,每月庫存貨物費(單位:萬元)與x之間的關(guān)系為:;若在距離車站11.5千米建倉庫,則和分別為4萬元和23萬元.(1)求的值;(2)這家公司應(yīng)該把倉庫建在距離車站多少千米處,才能使兩項費用之和最???最小費用是多少?20.(12分)已知橢圓的上頂點在直線上,點在橢圓上.(1)求橢圓C的方程;(2)點P,Q在橢圓C上,且,,點G為垂足,是否存在定圓恒經(jīng)過A,G兩點,若存在,求出圓的方程;若不存在,請說明理由.21.(12分)某中學(xué)共有名學(xué)生,其中高一年級有名學(xué)生,為了解學(xué)生的睡眠情況,用分層抽樣的方法,在三個年級中抽取了名學(xué)生,依據(jù)每名學(xué)生的睡眠時間(單位:小時),繪制出了如圖所示的頻率分布直方圖.(1)求樣本中高一年級學(xué)生人數(shù)及圖中的值;(2)估計樣本數(shù)據(jù)的中位數(shù)(保留兩位小數(shù));(3)估計全校睡眠時間超過個小時的學(xué)生人數(shù).22.(10分)已知函數(shù)在處有極值.(1)求常數(shù)a,b的值;(2)求函數(shù)在上的最值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先找臨界情況當PQ與圓C相切時,,進而可得滿足條件的點P形成的圖形為大圓(包括內(nèi)部),即求.【詳解】當PQ與圓C相切時,,這種情況為臨界情況,當P往外時無法找到點Q使,當P往里時,可以找到Q使,故滿足條件的點P形成的圖形為大圓(包括內(nèi)部),如圖,由圓,可知圓心,半徑為1,則大圓的半徑為,∴所有滿足條件的點P構(gòu)成圖形的面積為.故選:D.【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是找出臨界情況時點所滿足的條件,進而即可得到動點滿足條件的圖形,問題即可解決.2、A【解析】利用空間向量的線性運算即可求解.【詳解】2秒后質(zhì)點所處的位置為.故選:A【點睛】本題考查了空間向量的線性運算,考查了基本知識掌握的情況以及學(xué)生的綜合素養(yǎng),屬于基礎(chǔ)題.3、D【解析】以正方體為載體說明即可.【詳解】如下圖所示的正方體:和是異面直線,,;和是異面直線,,與是異面直線.所以兩直線與是異面直線,,則的位置關(guān)系是相交或異面.故選:D4、C【解析】第n環(huán)天石心塊數(shù)為,第一層共有n環(huán),則是以9為首項,9為公差的等差數(shù)列,設(shè)為的前n項和,由題意可得,解方程即可得到n,進一步得到.【詳解】設(shè)第n環(huán)天石心塊數(shù)為,第一層共有n環(huán),則是以9為首項,9為公差的等差數(shù)列,,設(shè)為的前n項和,則第一層、第二層、第三層的塊數(shù)分別為,因為下層比中層多729塊,所以,即即,解得,所以.故選:C【點晴】本題主要考查等差數(shù)列前n項和有關(guān)的計算問題,考查學(xué)生數(shù)學(xué)運算能力,是一道容易題.5、B【解析】自行車前后輪與撐腳分別接觸地面,使得自行車穩(wěn)定,此時自行車與地面的三個接觸點不在同一條線上.【詳解】自行車前后輪與撐腳分別接觸地面,此時三個接觸點不在同一條線上,所以可以確定一個平面,即地面,從而使得自行車穩(wěn)定.故選B項.【點睛】本題考查不共線的三個點確定一個平面,屬于簡單題.6、B【解析】對求導(dǎo),取得函數(shù)在上有極值的等價條件,再根據(jù)充分條件和必要條件的定義進行判斷即可【詳解】解:,則,令,可得,當時,,當時,,即在上單調(diào)遞減,在上單調(diào)遞增,所以,函數(shù)在處取得極小值,若函數(shù)在上有極值,則,,因為,但是由推不出,因此是函數(shù)在上有極值的必要不充分條件故選:B7、A【解析】根據(jù)系統(tǒng)抽樣定義可求得結(jié)果【詳解】分段的間隔為故選:A8、A【解析】解設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,再利用基本不等式法求解.【詳解】解:設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,,所以,令,則,,當且僅當,即時,等號成立,即,故選:A9、A【解析】由直接可得.【詳解】由題知,所以,因為,所以.故選:A10、D【解析】求出函數(shù)的導(dǎo)數(shù),將x=1代入即可求得答案.【詳解】,故,故選:D.11、A【解析】先對函數(shù)求導(dǎo),然后代值計算即可【詳解】因為,所以.故選:A12、A【解析】可由橢圓方程先求出,在利用橢圓的定義求出,利用已知求解出,再取的中點,連接,利用中位線,即可求解出線段的中點到坐標原點的距離.【詳解】因為橢圓,,所以,結(jié)合得,,取的中點,連接,所以為的中位線,所以.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)曲線的方程,以及曲線的對稱性、范圍,結(jié)合每個選項進行逐一分析,即可判斷.【詳解】①將方程中的分別換為,方程不變,故該曲線關(guān)于原點對稱,故正確;②因為,解得或,故,同理可得:,故錯誤;③根據(jù)②可知,該曲線不是封閉圖形;聯(lián)立與,可得:,將其視作關(guān)于的一元二次方程,故,所以方程無根,故曲線與沒有交點;綜上所述,③正確;④假設(shè)曲線C與曲線有4個交點且交點構(gòu)成正方形,根據(jù)對稱性,第一象限的交點必在上,聯(lián)立與可得:,故交點為,而此點坐標不滿足,所以這樣的正方形不存在,故錯誤;綜上所述,正確的是①③.故答案為:.【點睛】本題考察曲線與方程中利用曲線方程研究曲線性質(zhì),處理問題的關(guān)鍵是把握由曲線方程如何研究對稱性以及范圍問題,屬困難題.14、【解析】對函數(shù)進行求導(dǎo),把代入導(dǎo)函數(shù)中,化簡即可求出的值.【詳解】函數(shù).故答案為:.15、【解析】利用雙曲線的定義、離心率的計算公式、兩角和差的正弦公式即可得出.【詳解】由可得,根據(jù)雙曲線的定義可得:,.故答案為:16、【解析】設(shè)出點,,,的坐標,表示出直線,的斜率,作和后利用基本不等式求最值,利用離心率求得與的關(guān)系,則答案可求詳解】解:設(shè),,,,,,,,,,,當且僅當,即時等號成立,是橢圓長軸的兩個端點,,是橢圓上關(guān)于軸對稱的兩點,,,即,的最小值為,橢圓的離心率為,,即,得,的最小值為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)詳見解析.【解析】(1)根據(jù)拋物線的準線方程求解;(2)由直線方程與拋物線方程聯(lián)立,利用弦長公式求解;(3)結(jié)合韋達定理,利用數(shù)量積運算證明;【小問1詳解】解:因為拋物線的準線方程是,所以,解得,所以拋物線的方程是;【小問2詳解】由,得,設(shè),則,所以;【小問3詳解】因為,,,所以,即.18、(1)證明見解析(2)【解析】(1)依題意可得,再由,即可得到平面,從而建立空間直角坐標系,利用空間向量法證明即可;(2)利用空間向量法求出二面角的余弦值;【小問1詳解】證明:因為平面,平面,平面,則,,又,因為,,平面,所以平面,故以點為坐標原點,建立空間直角坐標系如圖所示,則,0,,,0,,,1,,,1,,,0,,,所以,則,所以,故;【小問2詳解】解:解:因為,設(shè)平面的法向量為,則,即,令,則,,故,因為底面,所以的一個法向量為,所以,故平面與平面夾角的余弦值為19、(1)(2)這家公司應(yīng)該把倉庫建在距離車站多少千米處,才能使兩項費用之和最小,最小費用是萬元【解析】(1)將題中數(shù)據(jù)代入解析式可求;(2)利用基本不等式可求解.【小問1詳解】由題意,,當時,,,解得.【小問2詳解】設(shè)兩項費用之和為(單位:萬元),則.因為,所以,所以,當且僅當時等號成立,解得.所以這家公司應(yīng)該把倉庫建在距離車站多少千米處,才能使兩項費用之和最小,最小費用是萬元.20、(1);(2)存在,定圓.【解析】(1)由題可得,,即求;(2)由題可設(shè)直線的方程,利用韋達定理及條件可得直線恒過定點,則以為直徑的圓適合題意,即得.【小問1詳解】由題設(shè)知,橢圓上頂點為,且在直線上∴,即又點在橢圓上,∴解得,∴橢圓C的方程為;【小問2詳解】設(shè),,當直線斜率存在,設(shè)直線為:聯(lián)立方程,化簡得∴,,∵,∴又∵,∴將,代入,化簡得,即則或,①當時,直線恒過定點與點重合,不符題意.②當時,直線恒過定點,記為點,∵,∴以為直徑,其中點為圓心的圓恒經(jīng)過兩點,則圓方程為:;當直線斜率不存在,設(shè)方程為,,,且,,∴,解得或(舍去),,取,以為直徑作圓,圓方程為:恒經(jīng)過兩點,綜上所述,存在定圓恒經(jīng)過兩點.【點睛】關(guān)鍵點點睛:本題第二問的關(guān)鍵是證明直線恒過定點,結(jié)合條件可得以為直徑的圓,適合題意即得.21、(1)樣本中高一年級學(xué)生的人數(shù)為,;(2);(3).【解析】(1)利用分層抽樣可求得樣本中高一年級學(xué)生的人數(shù),利用頻率直方圖中所有矩形的面積之和為可求得的值;(2)利用中位數(shù)左邊的矩形面積之和為可求得中位數(shù)的值;(3)利用頻率分布直方圖可計算出全校睡眠時間超過個小時的學(xué)生人數(shù).【小問1詳解】解:樣本中高一年級學(xué)生的人數(shù)為.,解得.【小問2詳解】解:設(shè)中位數(shù)為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論