版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆山東省濟寧市高二上數(shù)學期末學業(yè)質量監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”其意思為:有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了()A.192
里 B.96
里C.48
里 D.24
里2.“”是“”的()A.充分不必要條件 B.必要不充分條件C充分必要條件 D.既不充分也不必要條件3.用數(shù)學歸納法證明“”的過程中,從到時,不等式的左邊增加了()A. B.C. D.4.命題:,的否定為()A., B.不存在,C., D.,5.命題“”的否定是()A. B.C. D.6.青少年視力被社會普遍關注,為了解他們的視力狀況,經(jīng)統(tǒng)計得到圖中右下角名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數(shù),葉表示十分位數(shù).如果執(zhí)行如圖所示的算法程序,那么輸出的結果是()A. B.C. D.7.橢圓的左右兩焦點分別為,,過垂直于x軸的直線交C于A,B兩點,,則橢圓C的離心率是()A. B.C. D.8.甲,乙、丙、丁、戊共5人隨機地排成一行,則甲、乙相鄰,丙、丁不相鄰的概率為()A. B.C. D.9.已知為坐標原點,點的坐標為,點的坐標滿足,則的最小值為()A B.C. D.410.已知向量=(3,0,1),=(﹣2,4,0),則3+2等于()A.(5,8,3) B.(5,﹣6,4)C.(8,16,4) D.(16,0,4)11.我國古代數(shù)學論著中有如下敘述:“遠望巍巍塔七層,紅光點點倍加增,共燈二百五十四.”思如下:一座7層塔共掛了254盞燈,且相鄰兩層下一層所掛燈數(shù)是上一層所掛燈數(shù)的2倍.下列結論不正確的是()A.底層塔共掛了128盞燈B.頂層塔共掛了2盞燈C.最下面3層塔所掛燈的總盞數(shù)比最上面3層塔所掛燈的總盞數(shù)多200D.最下面3層塔所掛燈的總盞數(shù)是最上面3層塔所掛燈的總盞數(shù)的16倍12.如圖,在棱長為的正方體中,為線段的中點,為線段的中點,則直線到直線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記為等差數(shù)列的前n項和.若,則_________.14.同時擲兩枚骰子,則點數(shù)和為7的概率是__________.15.若存在實常數(shù)k和b,使得函數(shù)F(x)和G(x)對其公共定義域上的任意實數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”,已知函數(shù)f(x)=x2(x∈R),g(x)(x<0),h(x)=2elnx,有下列命題:①F(x)=f(x)﹣g(x)內(nèi)單調(diào)遞增;②f(x)和g(x)之間存在“隔離直線”,且b的最小值為﹣4;③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(﹣4,0];④f(x)和h(x)之間存在唯一的“隔離直線”y=2x﹣e其中真命題為_____(請?zhí)钏姓_命題的序號)16.定義離心率是的橢圓為“黃金橢圓”.已知橢圓是“黃金橢圓”,則_________.若“黃金橢圓”兩個焦點分別為、,P為橢圓C上的異于頂點的任意一點,點M是的內(nèi)心,連接并延長交于點N,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=1,BC=2,PA=1(1)求證:AB⊥PC;(2)點M在線段PD上,二面角M﹣AC﹣D的余弦值為,求三棱錐M﹣ACP體積18.(12分)已知點,,雙曲線C上除頂點外任一點滿足直線RM與QM的斜率之積為4.(1)求C方程;(2)若直線l過C上的一點P,且與C的漸近線相交于A,B兩點,點A,B分別位于第一、第二象限,,求的最小值.19.(12分)已知數(shù)列和滿足,(1)若,求的通項公式;(2)若,,證明為等差數(shù)列,并求和的通項公式20.(12分)如圖,正方體的棱長為4,E,F(xiàn)分別是上的點,且.(1)求與平面所成角的正切值;(2)求證:.21.(12分)在平面直角坐標系中,動點到點的距離和它到直線的距離之比為.動點的軌跡為曲線.(1)求曲線的方程,并說明曲線是什么圖形;(2)已知曲線與軸的交點分別為,點是曲線上異于的一點,直線的斜率為,直線的斜率為,求證:為定值.22.(10分)已知命題:“,”,命題:“,”,若“且”為真命題,求實數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題可得此人每天走的步數(shù)等比數(shù)列,根據(jù)求和公式求出首項可得.【詳解】由題意可知此人每天走的步數(shù)構成為公比的等比數(shù)列,由題意和等比數(shù)列的求和公式可得,解得,第此人第二天走里.故選:B2、A【解析】根據(jù)充分條件和必要條件的定義直接判斷即可.【詳解】若,則,即或,推不出;反過來,若,可推出.故“”是“”的充分不必要條件故選:A.3、B【解析】依題意,由遞推到時,不等式左邊為,與時不等式的左邊作差比較即可得到答案【詳解】用數(shù)學歸納法證明等式的過程中,假設時不等式成立,左邊,則當時,左邊,∴從到時,不等式的左邊增加了故選:B4、D【解析】含有量詞的命題的否定方法:先改變量詞,然后再否定結論即可【詳解】解:命題:,的否定為:,故選:D5、C【解析】特稱命題的否定,先把存在量詞改為全稱量詞,再把結論進行否定即可.【詳解】命題“”的否定是“”.故選:C6、B【解析】依題意該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),結合莖葉圖判斷可得;【詳解】解:根據(jù)程序框圖可知,該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),由莖葉圖可知視力小于等于的有5人,故選:B7、C【解析】由題可得為等邊三角形,可得,即得.【詳解】∵過垂直于x軸的直線交橢圓C于A,B兩點,,∴為等邊三角形,由代入,可得,∴,所以,即,又,解得.故選:C.8、A【解析】先求出所有的基本事件,再求出甲、乙相鄰,丙、丁不相鄰的基本事件,根據(jù)古典概型的概率公式求解即可【詳解】甲,乙、丙、丁、戊共5人隨機地排成一行有種方法,甲、乙相鄰,丙、丁不相鄰的排法為先將甲、乙捆綁在一起,再與戊進行排列,然后丙、丁從3個空中選2個空插入,則共有種方法,所以甲、乙相鄰,丙、丁不相鄰的概率為,故選:A9、B【解析】由數(shù)量積的坐標運算求得,令,化為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案【詳解】解:根據(jù)題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當直線過時,直線在軸上的截距最小,有最小值為,即,所以故選:B10、A【解析】直接根據(jù)空間向量的線性運算,即可得到答案;【詳解】,故選:A11、C【解析】由題設易知是公比為2的等比數(shù)列,應用等比數(shù)列前n項和公式求,結合各選項的描述及等比數(shù)列通項公式、前n項和公式判斷正誤即可.【詳解】從上往下記每層塔所掛燈的盞數(shù)為,則數(shù)列是公比為2的等比數(shù)列,且,解得,所以頂層塔共掛了2盞燈,B正確;底層塔共掛了盞燈,A正確最上面3層塔所掛燈總盞數(shù)為14,最下面3層塔所掛燈的總盞數(shù)為224,C不正確,D正確故選:C.12、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉化成點到直線的距離,結合余弦定理即同角三角函數(shù)基本關系,求得,因此可得,進而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因為,分別為,的中點,因為,,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因為,所以是銳角,所以,在直角三角形中,,故直線到直線的距離為;故選:C二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】根據(jù)等差數(shù)列前項和的公式及等差數(shù)列的性質即可得出答案.【詳解】解:,所以.故答案為:5.14、【解析】利用古典概型的概率計算公式即得.【詳解】依題意,記拋擲兩顆骰子向上的點數(shù)分別為,,則可得到數(shù)組共有組,其中滿足的組數(shù)共有6組,分別為,,,,,,因此所求的概率等于.故答案為:.15、①②④【解析】①求出F(x)=f(x)﹣g(x)的導數(shù),檢驗在x∈(,0)內(nèi)的導數(shù)符號,即可判斷;②、③設f(x)、g(x)的隔離直線為y=kx+b,x2≥kx+b對一切實數(shù)x成立,即有△1≤0,又kx+b對一切x<0成立,△2≤0,k≤0,b≤0,根據(jù)不等式的性質,求出k,b的范圍,即可判斷②③;④存在f(x)和g(x)的隔離直線,那么該直線過這個公共點,設隔離直線的斜率為k.則隔離直線,構造函數(shù),求出函數(shù)函數(shù)的導數(shù),根據(jù)導數(shù)求出函數(shù)的最值【解答】解:①∵F(x)=f(x)﹣g(x)=x2,∴x∈(,0),F(xiàn)′(x)=2x0,∴F(x)=f(x)﹣g(x)在x∈(,0)內(nèi)單調(diào)遞增,故①對;②、③設f(x)、g(x)的隔離直線為y=kx+b,則x2≥kx+b對一切實數(shù)x成立,即有△1≤0,k2+4b≤0,又kx+b對一切x<0成立,則kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k?﹣4≤k≤0,同理?﹣4≤b≤0,故②對,③錯;④函數(shù)f(x)和h(x)的圖象在x處有公共點,因此存在f(x)和g(x)的隔離直線,那么該直線過這個公共點,設隔離直線的斜率為k.則隔離直線方程為y﹣e=k(x),即y=kx﹣ke,由f(x)≥kx﹣ke(x∈R),可得x2﹣kx+ke≥0當x∈R恒成立,則△≤0,只有k=2,此時直線方程為:y=2x﹣e,下面證明h(x)≤2x﹣e,令G(x)=2x﹣e﹣h(x)=2x﹣e﹣2elnx,G′(x),當x時,G′(x)=0,當0<x時,G′(x)<0,當x時,G′(x)>0,則當x時,G(x)取到極小值,極小值是0,也是最小值所以G(x)=2x﹣e﹣g(x)≥0,則g(x)≤2x﹣e,當x>0時恒成立∴函數(shù)f(x)和g(x)存在唯一的隔離直線y=2x﹣e,故④正確故答案為:①②④【點睛】本題以命題的真假判斷與應用為載體,考查新定義,關鍵是對新定義的理解,考查函數(shù)的求導,利用導數(shù)求最值,屬于難題.16、①.②.【解析】第一空,直接套入“黃金橢圓”新定義即可,第二空,從內(nèi)切圓入手,找到等量關系,進而得到,求解即可【詳解】由題,,所以如圖,連接,設內(nèi)切圓半徑為,則,即,∴,∴,∴∴,∴故答案為:;【點睛】本題從新定義出發(fā),第一空直接套用定義可得答案,第二空升華,需要在理解新定義的基礎上,借助內(nèi)切圓的相關公式求解,層層遞進,是一道好題.關鍵點在于找到“”這一關系三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)將問題轉化為證明AB⊥平面PAC,然后結合已知可證;(2)建立空間直角坐標系,用向量法結合已知先確定點M位置,然后轉化法求體積可得.【小問1詳解】由題意得四邊形ADCB是直角梯形,AD=CD=1,故∠ACD=45°,∠ACB=45°,AC=.又BC=2,所以,所以,所以AB⊥AC.又PA⊥平面ABCD,AB平面ABCD,所以PA⊥AB.而PA平面PAC,AC平面PAC,,所以AB⊥平面PAC.又PC平面PAC,所以AB⊥PC【小問2詳解】過點A作AE⊥BC于E,易知E為BC中點,以A為原點,AE,AD,AP所在直線為x軸,y軸,z軸建立空間直角坐標系,則,,,.則設,.顯然,是平面ACD的一個法向量,設平面MAC的一個法向量為.則有,取,解得由二面角M﹣AC﹣D的余弦值為,有,解得,所以M為PD中點.所以18、(1)(2)1【解析】(1)由題意得,化簡可得答案,(2)求出漸近線方程,設點,,,,,由可得,代入雙曲線方程化簡可得,然后表示的坐標,再進行數(shù)量積運算,化簡后利用基本不等式可得答案【小問1詳解】由題意得,即,整理得,因為雙曲線的頂點坐標滿足上式,所以C的方程為.【小問2詳解】由(1)可知,曲線C的漸近線方程為,設點,,,,,由,得,整理得,①,把①代入,整理得②,因為,,所以.由,得,則,當且僅當時等號成立,所以的最小值是1.19、(1)(2)證明見解析,,【解析】(1)代入可得,變形得構造等比數(shù)列求的通項公式;(2)先由已知得,先分別求出,的通項公式,然后合并可得的通項公式,進而可得的通項公式【小問1詳解】當,時,,所以,即,整理得,所以是以為首項,為公比的等比數(shù)列故,即【小問2詳解】當時,由,,得,所以因為,所以,則是以為首項,2為公差的等差數(shù)列,,;是以為首項,2為公差的等差數(shù)列,,綜上所述,所以,,故是以2為首項,1為公差的等差數(shù)列當時,,且滿足,所以20、(1);(2)證明見解析.【解析】(1)在正方體中,平面,連接,則為與平面所成的角,在直角三角形,求出即可;(2)∵是正方體,又是空間垂直問題,∴易采用向量法,∴建立如圖所示的空間直角坐標系,欲證,只須證,再用向量數(shù)量積公式求解即可.【小問1詳解】在正方體中,平面,連接,則為與平面所成的角,又,,,∴;【小問2詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西省永壽縣渡馬九年制學校2025-2026學年八年級上學期期末歷史試卷(含答案)
- 河北省邢臺市威縣 2025-2026學年九年級上學期期末教學質量檢測道德與法治試卷(含答案)
- 2026年及未來5年中國會議電視產(chǎn)品行業(yè)市場深度研究及投資戰(zhàn)略規(guī)劃報告
- 四川省遂寧市高中2026屆高三年級一診考試英語(遂寧一診)(含答案)
- 《GAT 2001-2022移動警務 可信計算總體技術要求》專題研究報告
- 《GAT 1054.9-2018公安數(shù)據(jù)元限定詞(9)》專題研究報告:標準深度與前瞻應用
- 數(shù)據(jù)采集與清洗流程規(guī)
- 輔警籃球測試題及答案
- 珠海市輔警心理測試題及答案
- 水庫工程實施方案
- 2026屆福建省寧德市三校高三上學期1月月考歷史試題(含答案)
- 2026年冀教版初一地理上冊期末真題試卷+解析及答案
- 2026年孝昌縣供水有限公司公開招聘正式員工備考題庫及答案詳解參考
- 2025年文化產(chǎn)業(yè)版權保護與運營手冊
- 四川省樂山市高中高三上學期第一次調(diào)查研究考試數(shù)學試題【含答案詳解】
- 《創(chuàng)新創(chuàng)業(yè)基礎》課件-項目1:創(chuàng)新創(chuàng)業(yè)基礎認知
- 2026年初一寒假體育作業(yè)安排
- 物流行業(yè)運輸司機安全駕駛與效率績效評定表
- 2026北京市通州區(qū)事業(yè)單位公開招聘工作人員189人筆試重點基礎提升(共500題)附帶答案詳解
- 2025~2026學年山東省菏澤市牡丹區(qū)第二十一初級中學八年級上學期期中歷史試卷
- 2026國家統(tǒng)計局儀征調(diào)查隊招聘輔助調(diào)查員1人(江蘇)考試參考試題及答案解析
評論
0/150
提交評論