版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
浙江省公立寄宿學校2026屆高二數(shù)學第一學期期末復習檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線的一個方向向量為,直線的一個方向向量為,則直線與所成的角為()A30° B.45°C.60° D.90°2.下列命題中正確的是A.命題“若,則”的否命題為:“若,則”B.若命題,是假命題,則實數(shù)C.“”的一個充分不必要條件是“”D.命題“若,則”的逆否命題為真命題3.某幾何體的三視圖如圖所示,則該幾何體的體積為A.54 B.45C.27 D.814.如圖,棱長為1的正方體中,為線段上的動點,則下列結(jié)論錯誤的是A.B.平面平面C.的最大值為D.的最小值為5.過點且與拋物線只有一個公共點的直線有()A.1條 B.2條C.3條 D.0條6.如圖在中,,,在內(nèi)作射線與邊交于點,則使得的概率是()A. B.C. D.7.已知,,則的最小值為()A. B.C. D.8.已知m,n表示兩條不同直線,表示兩個不同平面.設有兩個命題::若,則;:若,則.則下列命題中為真命題的是()A. B.C. D.9.已知雙曲線的離心率為,則該雙曲線的漸近線方程為()A. B.C. D.10.函數(shù)在上是單調(diào)遞增函數(shù),則的最大值等于()A.2 B.3C.5 D.611.已知平面直角坐標系內(nèi)一動點P,滿足圓上存在一點Q使得,則所有滿足條件的點P構成圖形的面積為()A. B.C. D.12.已知空間向量,,,則()A.4 B.-4C.0 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知P為拋物線上的一個動點,設P到拋物線準線的距離為d,點,那么的最小值為______14.已知為曲線:上一點,,,則的最小值為______15.設是數(shù)列的前項和,且,則_____________.16.在中,,,,則此三角形的最大邊長為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若等比數(shù)列的各項為正,前項和為,且,.(1)求數(shù)列的通項公式;(2)若是以1為首項,1為公差的等差數(shù)列,求數(shù)列的前項和.18.(12分)為了調(diào)查某蘋果園中蘋果的生長情況,在蘋果園中隨機采摘了個蘋果.經(jīng)整理分析后發(fā)現(xiàn),蘋果的重量(單位:)近似服從正態(tài)分布,如圖所示,已知,.(1)若從蘋果園中隨機采摘個蘋果,求該蘋果的重量在內(nèi)的概率;(2)從這個蘋果中隨機挑出個,這個蘋果的重量情況如下.重量范圍(單位:)個數(shù)為進一步了解蘋果的甜度,從這個蘋果中隨機選出個,記隨機選出的個蘋果中重量在內(nèi)的個數(shù)為,求隨機變量的分布列和數(shù)學期望.19.(12分)在平面直角坐標系中,過點的直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(1)求直線的普通方程和曲線的直角坐標方程;(2)設曲線與直線交于,兩點,求線段的中點的直角坐標及的值20.(12分)在平面直角坐標系中,橢圓的離心率為,且點在橢圓C上(1)求橢圓C的標準方程;(2)過點的直線與橢圓C交于A,B兩點,試探究直線上是否存在定點Q,使得為定值.若存在,求出定點Q的坐標及實數(shù)的值;若不存在,請說明理由21.(12分)已知的展開式中二項式系數(shù)和為16(1)求展開式中二項式系數(shù)最大的項;(2)設展開式中的常數(shù)項為p,展開式中所有項系數(shù)的和為q,求22.(10分)在①,②這兩個條件中任選一個,補充在下面的問題中,并作答.設數(shù)列的前項和為,且__________.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】直接由公式,計算兩直線的方向向量的夾角,進而得出直線與所成角的大小【詳解】因為,,所以,所以,所以直線與所成角的大小為故選:C2、C【解析】.命題的否定是同時否定條件和結(jié)論;.將當成真命題解出的范圍,再取補集即可;.求出“”的充要條件再判斷即可;.判斷原命題的真假即可【詳解】解:對于A:命題“若,則”的否命題為:“若,則“,故A錯誤;對于B:當命題,是真命題時,,所以,又因為命題為假命題,所以,故B錯誤;對于C:由“”解得:,故“”是“”的充分不必要條件,故C正確;對于D:因為命題“若,則”是假命題,所以其逆否命題也是假命題,故D錯誤;故選:C3、B【解析】由三視圖可得該幾何體是由平行六面體切割掉一個三棱錐而成,直觀圖如圖所示,所以該幾何體的體積為故選B點睛:本題考查了組合體的體積,由三視圖還原出幾何體,由四棱柱的體積減去三棱錐的體積.4、C【解析】∵,,∴面,面,∴,A正確;∵平面即為平面,平面即為平面,且平面,∴平面平面,∴平面平面,∴B正確;當時,為鈍角,∴C錯;將面與面沿展成平面圖形,線段即為的最小值,在中,,利用余弦定理解三角形得,即,∴D正確,故選C考點:立體幾何中的動態(tài)問題【思路點睛】立體幾何問題的求解策略是通過降維,轉(zhuǎn)化為平面幾何問題,具體方法表現(xiàn)為:
求空間角、距離,歸到三角形中求解;2.對于球的內(nèi)接外切問題,作適當?shù)慕孛妫纫芊从吵鑫恢藐P系,又要反映出數(shù)量關系;求曲面上兩點之間的最短距離,通過化曲為直轉(zhuǎn)化為同一平面上兩點間的距離5、B【解析】過的直線的斜率存在和不存在兩種情況分別討論即可得出答案.【詳解】易知過點,且斜率不存在的直線為,滿足與拋物線只有一個公共點.當直線的斜率存在時,設直線方程為,與聯(lián)立得,當時,方程有一個解,即直線與擾物線只有一個公共點.故滿足題意的直線有2條.故選:B6、C【解析】由題意可得,根據(jù)三角形中“大邊對大角,小邊對小角”的性質(zhì),將轉(zhuǎn)化為求的概率,又因為,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因為,,則的概率是故選:C【點睛】本題考查幾何概型及其計算方法的知識,屬于基礎題7、B【解析】將代數(shù)式展開,然后利用基本不等式可求出該代數(shù)式的最小值.【詳解】,,由基本不等式得,當且僅當時,等號成立.因此,的最小值為.故選B.【點睛】本題考查利用基本不等式求最值,在利用基本不等式時要注意“一正、二定、三相等”條件的成立,考查計算能力,屬于中等題.8、B【解析】利用直線與平面,平面與平面的位置關系判斷2個命題的真假,再利用復合命題的真值表判斷選項的正誤即可【詳解】,表示兩條不同直線,,表示兩個不同平面:若,,則也可能,也可能與相交,所以是假命題,為真命題;:令直線的方向向量為,直線的方向向量為,若,則,則,所以是真命題,所以為假命題;所以為假命題,是真命題,為假命題,是真命題,所以為假命題故選:9、C【解析】求得,由此求得雙曲線的漸近線方程.【詳解】離心率,則,所以漸近線方程.故選:C10、B【解析】由f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù),得到在[1,+∞)上,恒成立,從而解得a≤3,故a的最大值為3【詳解】解:∵f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù)∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)時,3x2≥3恒成立,∴a≤3,∴a的最大值是3故選:B11、D【解析】先找臨界情況當PQ與圓C相切時,,進而可得滿足條件的點P形成的圖形為大圓(包括內(nèi)部),即求.【詳解】當PQ與圓C相切時,,這種情況為臨界情況,當P往外時無法找到點Q使,當P往里時,可以找到Q使,故滿足條件的點P形成的圖形為大圓(包括內(nèi)部),如圖,由圓,可知圓心,半徑為1,則大圓的半徑為,∴所有滿足條件的點P構成圖形的面積為.故選:D.【點睛】關鍵點點睛:本題的關鍵是找出臨界情況時點所滿足的條件,進而即可得到動點滿足條件的圖形,問題即可解決.12、A【解析】根據(jù)空間向量平行求出x,y,進而求得答案.【詳解】因為,所以存在實數(shù),使得,則.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】由拋物線的定義可得,所以,由圖可知當三點共線時,取得最小值,從而可求得結(jié)果【詳解】拋物線的焦點,準線為,如圖,過作垂直準線于點,則,所以,由圖可知當三點共線時,取得最小值,即最小值為,,所以的最小值為5,故答案為:514、【解析】曲線是拋物線的右半部分,是拋物線的焦點,作出拋物線的準線,把轉(zhuǎn)化為到準線的距離,則到準線的距離為所求距離和的最小值【詳解】易知曲線是拋物線的右半部分,如圖,因為拋物線的準線方程為,是拋物線的焦點,所以等于到直線的距離.過作該直線的垂線,垂足為,則的最小值為故答案為:15、【解析】根據(jù)題意可知,再利用裂項相消法,即可求出結(jié)果.【詳解】因為,所以.故答案為:.16、【解析】可知B對的邊最大,再用正弦定理計算即可.【詳解】利用正弦定理可知,B對的邊最大,因為,,所以,.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設公比為,則由已知可得,求出公比,再求出首項,從而可求出數(shù)列的通項公式;(2)由已知可得,而,所以,然后利用錯位相減法可求得結(jié)果【小問1詳解】設各項為正的等比數(shù)列的公比為,,,則,,,即,解得或(舍去),所以,所以數(shù)列的通項公式為.【小問2詳解】因為是以1為首項,1為公差的等差數(shù)列,所以.由(1)知,所以.所以①在①的等式兩邊同乘以,得②由①②等式兩邊相減,得,所以數(shù)列的前項和.18、(1);(2)分布列答案見解析,數(shù)學期望為.【解析】(1)利用正態(tài)密度曲線的對稱性結(jié)合已知條件可求得的值;(2)分析可知,隨機變量的所有可能取值為、、,計算出隨機變量在不同取值下的概率,可得出隨機變量的分布列,進一步可求得的值.【小問1詳解】解:已知蘋果的重量(單位:)近似服從正態(tài)分布,由正態(tài)分布的對稱性可知,,所以從蘋果園中隨機采摘個蘋果,該蘋果的重量在內(nèi)的概率為.【小問2詳解】解:由題意可知,隨機變量的所有可能取值為、、,,;,所以,隨機變量的分布列為:所以19、(1)直線的普通方程為,曲線的直角坐標方程.(2)【解析】(1)直接利用轉(zhuǎn)換關系,在參數(shù)方程、極坐標方程和直角坐標方程之間進行轉(zhuǎn)換;(2)利用中點坐標公式和一元二次方程根和系數(shù)關系式的應用求出結(jié)果【小問1詳解】解:過點的直線的參數(shù)方程為為參數(shù)),轉(zhuǎn)換為普通方程為,即直線的普通方程為;曲線的極坐標方程為,即,即,根據(jù),轉(zhuǎn)換為直角坐標方程為,即曲線的直角坐標方程【小問2詳解】解:把代入,整理得,所以,設,,;故,代入,解得,故中點坐標為;把直線的參數(shù)方程為為參數(shù))代入,設和對應的參數(shù)為和,得到,整理得,所以20、(1)(2)存在,定點的坐標為,實數(shù)的值為【解析】(1)由題意可得,再結(jié)合,可求出,從而可求得橢圓方程,(2)設在直線上存在定點,當直線斜率存在時,設過點P的動直線l為,設,,將直線方程代入橢圓方程消去,利用根與系數(shù),再計算為常數(shù)可求出,從而可求得,當直線斜率不存在時,可求出兩點的坐標,從而可求得的值【小問1詳解】由題意知結(jié)合,可得,所以橢圓C的標準方程為,【小問2詳解】設在直線上存在定點,使為定值,①當直線斜率存在時,設過點P的動直線l為,設,·由得,則,,所以為常數(shù)則,解之得,即定點為,則②當直線斜率不存在時,即動直線方程為,不妨設,,此時也成立所以,存在定點使為定值,即21、(1)(2)【解析】(1)由二項式系數(shù)和的性質(zhì)得出,再由性質(zhì)求出展開式中二項式系數(shù)最大的項;(2)由通項得出,利用賦值法得出,再求解【小問1詳解】由題意可得,解得.,展
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋼筋工程施工方案
- 突發(fā)公共衛(wèi)生事件案例分析
- 2026年醫(yī)療廢物規(guī)范化管理知識培訓考核試題及答案
- 2025年放射工作人員培訓試題A卷及答案
- 企業(yè)安全生產(chǎn)托管服務工作內(nèi)容
- 建設工程施工合同糾紛要素式起訴狀模板填寫注意事項提醒
- 《大堰河我的保姆》讀書筆記
- 2026 年有子女離婚協(xié)議書官方模板
- 2026 年規(guī)范化離婚協(xié)議書合規(guī)版
- 2026年公共衛(wèi)生應急響應
- 2025至2030外周靜脈血栓切除裝置行業(yè)調(diào)研及市場前景預測評估報告
- DB34∕T 5176-2025 城市軌道交通智能運維系統(tǒng)建設指南
- 2025年貴州省凱里市輔警考試真題及答案
- 2026年全國煙花爆竹經(jīng)營單位主要負責人考試題庫(含答案)
- 2026年人力資源共享服務中心建設方案
- JJG(交通) 141-2017 瀝青路面無核密度儀
- DGTJ08-2198-2019 裝配式建筑評價標準
- 2026年中國前列腺電切鏡項目經(jīng)營分析報告
- 2025年國家開放大學《社會研究方法》期末考試復習試題及答案解析
- 幾何形體結(jié)構素描教案
- 2025金華市軌道交通控股集團運營有限公司應屆生招聘170人考試筆試備考試題及答案解析
評論
0/150
提交評論