版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆貴州省六盤水市盤縣第二中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為,實軸長為2,則雙曲線C的方程為()A. B.C. D.2.在等腰中,在線段斜邊上任取一點(diǎn),則線段的長度大于的長度的概率()A B.C. D.3.某班級從5名同學(xué)中挑出2名同學(xué)進(jìn)行大掃除,若小王和小張在這5名同學(xué)之中,則小王和小張都沒有被挑出的概率為()A. B.C. D.4.已知直線過點(diǎn),且其方向向量,則直線的方程為()A. B.C. D.5.設(shè)等差數(shù)列,前n項和分別是,若,則()A.1 B.C. D.6.已知是橢圓兩個焦點(diǎn),P在橢圓上,,且當(dāng)時,的面積最大,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.7.我們知道∶用平行于圓錐母線的平面(不過頂點(diǎn))截圓錐,則平面與圓錐側(cè)面的交線是拋物線一部分,如圖,在底面半徑和高均為2的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點(diǎn),已知過CD與E的平面與圓錐側(cè)面的交線是以E為頂點(diǎn)的圓錐曲線的一部分,則該圓錐曲線的焦點(diǎn)到其準(zhǔn)線的距離等于()A. B.C. D.18.以軸為對稱軸,頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)到準(zhǔn)線的距離為4的拋物線方程是()A. B.C.或 D.或9.等比數(shù)列的前項和為,若,則()A. B.8C.1或 D.或10.從某個角度觀察籃球(如圖甲),可以得到一個對稱的平面圖形,如圖乙所示,籃球的外輪廓為圓,將籃球表面的粘合線視為坐標(biāo)軸和雙曲線,若坐標(biāo)軸和雙曲線與圓的交點(diǎn)將圓的周長八等分,且,則該雙曲線的離心率為()A. B.C.2 D.11.若拋物線的準(zhǔn)線方程是,則拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.12.一條光線從點(diǎn)射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.關(guān)于曲線C:1,有如下結(jié)論:①曲線C關(guān)于原點(diǎn)對稱;②曲線C關(guān)于直線x±y=0對稱;③曲線C是封閉圖形,且封閉圖形的面積大于2π;④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點(diǎn);⑤曲線C與曲線D:|x|+|y|=2有4個公共點(diǎn),這4點(diǎn)構(gòu)成正方形其中正確結(jié)論的個數(shù)是_____14.如圖莖葉圖記錄了A、兩名營業(yè)員五天的銷售量,若A的銷售量的平均數(shù)比的銷售量的平均數(shù)多1,則A營業(yè)員銷售量的方差為___________.15.設(shè)數(shù)列的前n項和為,且是6和的等差中項,若對任意的,都有,則的最小值為________16.已知等差數(shù)列的前n項和為,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了調(diào)查某蘋果園中蘋果的生長情況,在蘋果園中隨機(jī)采摘了個蘋果.經(jīng)整理分析后發(fā)現(xiàn),蘋果的重量(單位:)近似服從正態(tài)分布,如圖所示,已知,.(1)若從蘋果園中隨機(jī)采摘個蘋果,求該蘋果的重量在內(nèi)的概率;(2)從這個蘋果中隨機(jī)挑出個,這個蘋果的重量情況如下.重量范圍(單位:)個數(shù)為進(jìn)一步了解蘋果的甜度,從這個蘋果中隨機(jī)選出個,記隨機(jī)選出的個蘋果中重量在內(nèi)的個數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.18.(12分)數(shù)列中,,且.(1)證明;數(shù)列是等比數(shù)列.(2)若,求數(shù)列的前n項和.19.(12分)已知函數(shù)在處取得極值(1)求實數(shù)a的值;(2)若函數(shù)在內(nèi)有零點(diǎn),求實數(shù)b的取值范圍20.(12分)已知,對于有限集,令表示集合中元素的個數(shù).例如:當(dāng)時,,(1)當(dāng)時,請直接寫出集合的子集的個數(shù);(2)當(dāng)時,,都是集合的子集(,可以相同),并且.求滿足條件的有序集合對的個數(shù);(3)假設(shè)存在集合、具有以下性質(zhì):將1,1,2,2,··,,.這個整數(shù)按某種次序排成一列,使得在這個序列中,對于任意,與之間恰好排列個整數(shù).證明:是4的倍數(shù)21.(12分)已知拋物線:上的點(diǎn)到焦點(diǎn)的距離為(1)求拋物線的方程;(2)設(shè)縱截距為的直線與拋物線交于,兩個不同的點(diǎn),若,求直線的方程22.(10分)已知函數(shù)f(x)=x3+ax2+2,x=2是f(x)的一個極值點(diǎn).(1)求實數(shù)a的值;(2)求f(x)在區(qū)間(-1,4]上的最大值和最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)條件,求出,的值,結(jié)合雙曲線的方程進(jìn)行求解即可【詳解】解:設(shè)雙曲線的方程為由已知得:,,再由,,雙曲線的方程為:故選:D2、C【解析】利用幾何概型的長度比值,即可計算.【詳解】設(shè)直角邊長,斜邊,則線段的長度大于的長度的概率.故選:C3、B【解析】記另3名同學(xué)分別為a,b,c,應(yīng)用列舉法求古典概型的概率即可.【詳解】記另3名同學(xué)分別為a,b,c,所以基本事件為,,(a,小王),(a,小張),,(b,小王),(b,小張),(c,小王),(c,小張),(小王,小張),共10種小王和小張都沒有被挑出包括的基本事件為,,,共3種,綜上,小王和小張都沒有挑出的概率為故選:B.4、D【解析】根據(jù)題意和直線的點(diǎn)方向式方程即可得出結(jié)果.【詳解】因為直線過點(diǎn),且方向向量為,由直線的點(diǎn)方向式方程,可得直線的方程為:,整理,得.故選:D5、B【解析】根據(jù)等差數(shù)列的性質(zhì)和求和公式變形求解即可【詳解】因為等差數(shù)列,的前n項和分別是,所以,故選:B6、A【解析】由題意知c=3,當(dāng)△F1PF2的面積最大時,點(diǎn)P與橢圓在y軸上的頂點(diǎn)重合,即可解出【詳解】由題意知c=3,當(dāng)△F1PF2的面積最大時,點(diǎn)P與橢圓在y軸上的頂點(diǎn)重合,∵時,△F1PF2的面積最大,∴a==,b=∴橢圓的標(biāo)準(zhǔn)方程為故選:A7、C【解析】由圓錐的底面半徑和高及E的位置可得,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可得C的坐標(biāo),設(shè)拋物線的方程,將C的坐標(biāo)代入求出拋物線的方程,進(jìn)而可得焦點(diǎn)到其準(zhǔn)線的距離【詳解】設(shè)AB,CD的交點(diǎn)為,連接PO,由題意可得PO⊥面AB,所以PO⊥OB,由題意OB=OP=OC=2,因為E是母線PB的中點(diǎn),所以,由題意建立適當(dāng)?shù)淖鴺?biāo)系,以BP為y軸以O(shè)E為x軸,E為坐標(biāo)原點(diǎn),如圖所示∶可得∶,設(shè)拋物線的方程為y2=mx,將C點(diǎn)坐標(biāo)代入可得,所以,所以拋物線的方程為∶,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,所以焦點(diǎn)到其準(zhǔn)線的距離為故選:C8、C【解析】根據(jù)拋物線的概念以及幾何性質(zhì)即可求拋物線的標(biāo)準(zhǔn)方程.【詳解】依題意設(shè)拋物線方程為因為焦點(diǎn)到準(zhǔn)線的距離為4,所以,所以,所以拋物線方程或故選:C9、C【解析】根據(jù)等比數(shù)列的前項和公式及等比數(shù)列通項公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,則因為,所以,即,解得或,所以或.故選:C.10、B【解析】設(shè)出雙曲線方程,把雙曲線上的點(diǎn)的坐標(biāo)表示出來并代入到方程中,找到的關(guān)系即可求解.【詳解】以O(shè)為原點(diǎn),AD所在直線為x軸建系,不妨設(shè),則該雙曲線過點(diǎn)且,將點(diǎn)代入方程,故離心率為,故選:B【點(diǎn)睛】本題考查已知點(diǎn)在雙曲線上求雙曲線離心率的方法,屬于基礎(chǔ)題目11、D【解析】根據(jù)拋物線的準(zhǔn)線方程,可直接得出拋物線的焦點(diǎn),進(jìn)而利用待定系數(shù)法求得拋物線的標(biāo)準(zhǔn)方程【詳解】準(zhǔn)線方程為,則說明拋物線的焦點(diǎn)在軸的正半軸則其標(biāo)準(zhǔn)方程可設(shè)為:則準(zhǔn)線方程為:解得:則拋物線的標(biāo)準(zhǔn)方程為:故選:D12、D【解析】由光的反射原理知,反射光線的反向延長線必過點(diǎn),設(shè)反射光線所在直線的斜率為,則反射光線所在直線方程為:,即:.又因為光線與圓相切,所以,,整理:,解得:,或,故選D考點(diǎn):1、圓的標(biāo)準(zhǔn)方程;2、直線的方程;3、直線與圓的位置關(guān)系.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】直接利用曲線的性質(zhì),對稱性的應(yīng)用可判斷①②;求出可判斷③;聯(lián)立方程,解方程組可判斷④⑤的結(jié)論【詳解】對于①,將方程中的x換為﹣x,y換為﹣y,方程不變,曲線C關(guān)于原點(diǎn)對稱,故①正確;對于②,將方程中的x換為﹣y,把y換成﹣x,方程不變,曲線C關(guān)于直線x±y=0對稱,故②正確;對于③,由方程得,故曲線C不是封閉圖形,故③錯誤;對于④,曲線C:,不是封閉圖形,聯(lián)立整理可得:,方程無解,故④正確;對于⑤,曲線C與曲線D:由于,解得,根據(jù)對稱性,可得公共點(diǎn)為,故曲線C與曲線D有四個交點(diǎn),這4點(diǎn)構(gòu)成正方形,故⑤正確故答案為:414、44【解析】先根據(jù)題意求出x的值,進(jìn)而利用方差公式求出A營業(yè)員銷售量的方差.【詳解】由A的平均數(shù)比的平均數(shù)多1知,A的總量比的總量多5,所以,A的平均數(shù)為17,方差為.故答案為:4415、【解析】先根據(jù)和項與通項關(guān)系得通項公式,再根據(jù)等比數(shù)列求和公式得,再根據(jù)函數(shù)單調(diào)性得取值范圍,即得取值范圍,解得結(jié)果.【詳解】因為是6和的等差中項,所以當(dāng)時,當(dāng)時,因此當(dāng)為偶數(shù)時,當(dāng)為奇數(shù)時,因此因為在上單調(diào)遞增,所以故答案為:【點(diǎn)睛】本題考查根據(jù)和項求通項、等比數(shù)列定義、等比數(shù)列求和公式、利用函數(shù)單調(diào)性求值域,考查綜合分析求解能力,屬較難題.16、36【解析】根據(jù)等比數(shù)列下標(biāo)和性質(zhì)得到,再根據(jù)等差數(shù)列前項和公式計算可得;【詳解】解:因,所以,所以;故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)分布列答案見解析,數(shù)學(xué)期望為.【解析】(1)利用正態(tài)密度曲線的對稱性結(jié)合已知條件可求得的值;(2)分析可知,隨機(jī)變量的所有可能取值為、、,計算出隨機(jī)變量在不同取值下的概率,可得出隨機(jī)變量的分布列,進(jìn)一步可求得的值.【小問1詳解】解:已知蘋果的重量(單位:)近似服從正態(tài)分布,由正態(tài)分布的對稱性可知,,所以從蘋果園中隨機(jī)采摘個蘋果,該蘋果的重量在內(nèi)的概率為.【小問2詳解】解:由題意可知,隨機(jī)變量的所有可能取值為、、,,;,所以,隨機(jī)變量的分布列為:所以18、(1)證明見解析;(2).【解析】(1)根據(jù)遞推公式,結(jié)合等差數(shù)列的定義、等比數(shù)列的定義進(jìn)行證明即可;(2)運(yùn)用裂項相消法進(jìn)行求解即可.【小問1詳解】∵,∴,又∵,∴,∴數(shù)列是首項為0,公差為1的等差數(shù)列,∴,∴,從而,∴數(shù)列是首項為2,公比為2的等比數(shù)列;【小問2詳解】由(1)知,則,∴,∴.19、(1);(2)【解析】(1)由題意可得,從而可求出a的值;(2)先對函數(shù)求導(dǎo),求得函數(shù)的單調(diào)區(qū)間,從而可由函數(shù)的變化情況可知,要函數(shù)在內(nèi)有零點(diǎn),只要函數(shù)在內(nèi)的最大值大于等于零,最小值小于等于零,然后解不等式組可得答案【詳解】解:(1)在處取得極值,∴,∴.經(jīng)驗證時,在處取得極值(2)由(1)知,∴極值點(diǎn)為2,.將x,,在內(nèi)的取值列表如下:x024/-0+/b極小值由此可得,在內(nèi)有零點(diǎn),只需∴20、(1)8(2)454(3)證明見詳解【解析】(1)n元集合的直接個數(shù)為可得;(2)由已知結(jié)合可得,或,然后可得集合的包含關(guān)系可解;(3)根據(jù)每兩個相同整數(shù)之間的整數(shù)個數(shù)之和與總的數(shù)字個數(shù)之間的關(guān)系可證.【小問1詳解】當(dāng)時,集合的子集個數(shù)為【小問2詳解】易知,又,所以,即,得,或,所以或1)若,則滿足條件的集合對共有,2)若,同理,滿足條件集合對共有2433)當(dāng)A=B時,滿足條件的集合對共有所以,滿足條件集合對共243+243-32=454個.【小問3詳解】記,則1,1,2,2,··,,共2n個正整數(shù),將這2n個正整數(shù)按照要求排列時,需在1和1中間放入1個數(shù),在2和2中間放入2個數(shù),…,在n和n中間放入n個數(shù),共放入了個數(shù),由于排列完成后共有2n個數(shù),且1,1,2,2,··,,剛好放完,所以放入數(shù)字個數(shù)必為偶數(shù),即Z,所以,Z,所以是4的倍數(shù)21、(1);(2)【解析】(1)利用拋物線的性質(zhì)即可求解.(2)設(shè)直線方程,與拋物線聯(lián)立,利用韋達(dá)定理,即可求解.【詳解】(1)由題設(shè)知,拋物線的準(zhǔn)線方程為,由點(diǎn)到焦點(diǎn)的距離為,得,解得,所以拋物線的標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合成碳膜電位器制造工崗前工作改進(jìn)考核試卷含答案
- 2025年地震減災(zāi)服務(wù)合作協(xié)議書
- 熟料燒結(jié)工崗前安全風(fēng)險考核試卷含答案
- 2025年公路養(yǎng)護(hù)劑合作協(xié)議書
- 2025年新型電子打火沼氣灶合作協(xié)議書
- 2025年抗狂犬病血清項目發(fā)展計劃
- 2025年四川省巴中市中考化學(xué)真題卷含答案解析
- 工會經(jīng)費(fèi)收支情況自查報告
- 中心小學(xué)火災(zāi)隱患排查整治工作方案
- 路基強(qiáng)夯試驗段施工方案
- 中職數(shù)學(xué)高等教育出版社
- 2024屆山東省威海市高三二模數(shù)學(xué)試題(解析版)
- 設(shè)備管理獎罰管理制度
- ab股權(quán)協(xié)議書范本
- 工程造價審計服務(wù)投標(biāo)方案(技術(shù)方案)
- 蟹苗買賣合同協(xié)議
- 胸外科手術(shù)圍手術(shù)期的護(hù)理
- 全球著名空港產(chǎn)業(yè)發(fā)展案例解析
- 科技領(lǐng)域安全風(fēng)險評估及保障措施
- 鍋爐水質(zhì)化驗記錄表(完整版)
- 鋼筋工勞務(wù)合同
評論
0/150
提交評論