版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆河北省秦皇島中學(xué)高一上數(shù)學(xué)期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),,則()A. B.C. D.2.如圖,在等腰梯形中,,分別是底邊的中點,把四邊形沿直線折起使得平面平面.若動點平面,設(shè)與平面所成的角分別為(均不為0).若,則動點的軌跡圍成的圖形的面積為A. B.C. D.3.已知等差數(shù)列的前項和為,若,則A.18 B.13C.9 D.74.設(shè)則下列說法正確的是()A.方程無解 B.C.奇函數(shù) D.5.已知函數(shù),則使得成立的的取值范圍是()A. B.C. D.6.已知函數(shù),,其中,若,,使得成立,則()A. B.C. D.7.在正內(nèi)有一點,滿足等式,,則()A. B.C. D.8.已知,,,,則,,的大小關(guān)系是()A. B.C. D.9.若直線的傾斜角為,且經(jīng)過點,則直線的方程是A. B.C. D.10.已知f(x)、g(x)均為[﹣1,3]上連續(xù)不斷的曲線,根據(jù)下表能判斷方程f(x)=g(x)有實數(shù)解的區(qū)間是()x﹣10123f(x)﹣06773.0115.4325.9807.651g(x)﹣0.5303.4514.8905.2416.892A.(﹣1,0) B.(1,2)C.(0,1) D.(2,3)二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓心為(1,1),經(jīng)過點(4,5),則圓的標(biāo)準(zhǔn)方程為_____________________.12.若函數(shù)是定義在上的偶函數(shù),當(dāng)時,.則當(dāng)時,______,若,則實數(shù)的取值范圍是_______.13.在直角坐標(biāo)系中,直線的傾斜角________14.若“”是“”的充要條件,則實數(shù)m的取值是_________15.已知,則的值為__________16.定義域為R,值域為-∞,1三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù))的最大值為2(1)求m的值;(2)求使成立的x的取值集合;(3)將的圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼模┍叮v坐標(biāo)不變),得到函數(shù)的圖象,若是的一個零點,求t的最大值18.設(shè)為平面直角坐標(biāo)系中的四點,且,,(1)若,求點的坐標(biāo)及;(2)設(shè)向量,,若與平行,求實數(shù)的值19.如圖,在三棱錐S—ABC中,SC⊥平面ABC,點P、M分別是SC和SB的中點,設(shè)PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°.(1)求證:平面MAP⊥平面SAC.(2)求二面角M—AC—B的平面角的正切值;20.在平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖像與兩坐標(biāo)軸有三個交點,經(jīng)過這三點的圓記為(1)求圓的方程;(2)若過點的直線與圓相交,所截得的弦長為4,求直線的方程.21.某地區(qū)每年各個月份的月平均最高氣溫近似地滿足周期性規(guī)律,因此第個月的月平均最高氣溫可近似地用函數(shù)來刻畫,其中正整數(shù)表示月份且,例如表示月份,和是正整數(shù),,.統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份的月平均最高氣溫基本相同,月份的月平均最高氣溫為攝氏度,是一年中月平均最高氣溫最低的月份,隨后逐月遞增直到月份達到最高為攝氏度.(1)求的解析式;(2)某植物在月平均最高氣溫低于攝氏度的環(huán)境中才可生存,求一年中該植物在該地區(qū)可生存的月份數(shù).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】解出不等式,然后可得答案.【詳解】因為,所以故選:D2、D【解析】由題意,PE=BEcotθ1,PF=CFcotθ2,∵BE=CF,θ1=θ2,∴PE=PF以EF所在直線為x軸,EF的垂直平分線為y軸建立坐標(biāo)系,設(shè)E(﹣,0),F(xiàn)(,0),P(x,y),則(x+)2+y2=[(x﹣)2+y2],∴3x2+3y2+5ax+a2=0,即(x+a)2+y2=a2,軌跡為圓,面積為故答案選:D點睛:這個題考查的是立體幾何中點的軌跡問題,在求動點軌跡問題中常用的方法有:建立坐標(biāo)系,將立體問題平面化,用方程的形式體現(xiàn)軌跡;或者根據(jù)幾何意義得到軌跡,但是注意得到軌跡后,一些特殊點是否需要去掉3、B【解析】利用等差數(shù)列通項公式、前項和列方程組,求出,.由此能求出【詳解】解:等差數(shù)列的前項和為,,,,解得,故選【點睛】本題考查等差數(shù)列第7項的值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題4、B【解析】根據(jù)函數(shù)的定義逐個分析判斷【詳解】對于A,當(dāng)為有理數(shù)時,由,得,所以A錯誤,對于B,因為為無理數(shù),所以,所以B正確,對于C,當(dāng)為有理數(shù)時,也為有理數(shù),所以,當(dāng)為無理數(shù)時,也為無理數(shù),所以,所以為偶函數(shù),所以C錯誤,對于D,因為,所以,所以D錯誤,故選:B5、C【解析】令,則,從而,即可得到,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷其單調(diào)性,進而可得,解不等式可得答案【詳解】令,則,,所以,所以,令,則,所以,所以,所以在單調(diào)遞增,所以由,得,所以,解得,故選:C【點睛】關(guān)鍵點點睛:此題考查不等式恒成立問題,考查函數(shù)單調(diào)性的應(yīng)用,解題的關(guān)鍵是換元后對不等式變形得,再構(gòu)造函數(shù),利用函數(shù)的單調(diào)性解不等式.6、B【解析】首先已知等式變形為,構(gòu)造兩個函數(shù),,問題可轉(zhuǎn)化為這兩個函數(shù)的值域之間的包含關(guān)系【詳解】∵,,∴,又,∴,∴由得,,設(shè),,則,,,∴的值域是值域的子集∵,時,,顯然,(否則0屬于的值域,但)∴,∴(*)由上討論知同號,時,(*)式可化為,∴,,當(dāng)時,(*)式可化為,∴,無解綜上:故選:B【點睛】本題考查函數(shù)恒成立問題,解題關(guān)鍵是掌握轉(zhuǎn)化與化歸思想.首先是分離兩個變量,然后構(gòu)造新函數(shù),問題轉(zhuǎn)化為兩個函數(shù)值域之間的包含關(guān)系.其次通過已知關(guān)系確定函數(shù)值域的形式(或者參數(shù)的一個范圍),在這個范圍解不等式才能非常簡單地求解7、A【解析】過作交于,作交于,則,可得,在中由正弦定理可得答案.【詳解】過作交于,作交于,則,,在中,,,由正弦定理得.故選:A.8、B【解析】根據(jù)題意不妨設(shè),利用對數(shù)的運算性質(zhì)化簡x,利用指數(shù)函數(shù)的單調(diào)性求出y的取值范圍,利用指數(shù)冪的運算求出z,進而得出結(jié)果.【詳解】由,不妨設(shè),則,,,所以,故選:B9、B【解析】直線l的斜率等于tan45°=1,由點斜式求得直線l的方程為y-0=,即故選:B10、C【解析】設(shè)h(x)=f(x)﹣g(x),利用h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,即可得出結(jié)論.【詳解】設(shè)h(x)=f(x)﹣g(x),則h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,∴h(x)的零點在區(qū)間(0,1),故選:C.【點睛】思路點睛:該題考查的是有關(guān)零點存在性定理的應(yīng)用問題,解題思路如下:(1)先構(gòu)造函數(shù)h(x)=f(x)﹣g(x);(2)利用題中所給的有關(guān)函數(shù)值,得到h(0)=﹣0.44<0,h(1)=0.542>0;(3)利用零點存在性定理,得到結(jié)果.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】設(shè)出圓的標(biāo)準(zhǔn)方程,代入點的坐標(biāo),求出半徑,求出圓的標(biāo)準(zhǔn)方程【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-1)2=R2,由圓經(jīng)過點(4,5)得R2=25,從而所求方程為(x-1)2+(y-1)2=25,故答案為(x-1)2+(y-1)2=25【點睛】本題主要考查圓的標(biāo)準(zhǔn)方程,利用了待定系數(shù)法,關(guān)鍵是確定圓的半徑12、①.②.【解析】根據(jù)給定條件利用偶函數(shù)的定義即可求出時解析式;再借助函數(shù)在單調(diào)性即可求解作答.【詳解】因函數(shù)是定義在上的偶函數(shù),且當(dāng)時,,則當(dāng)時,,,所以當(dāng)時,;依題意,在上單調(diào)遞增,則,解得,所以實數(shù)的取值范圍是.故答案為:;13、##30°【解析】由直線方程得斜率,由斜率得傾斜角【詳解】試題分析:直線化成,可知,而,故故答案為:14、0【解析】根據(jù)充要條件的定義即可求解.【詳解】,則{x|}={x|},即.故答案為:0.15、【解析】答案:16、fx【解析】利用基本初等函數(shù)的性質(zhì)可知滿足要求的函數(shù)可以是fx=1-a【詳解】因為fx=2x的定義域為所以fx=-2x的定義域為則fx=1-2x的定義域為所以定義域為R,值域為-∞,1的一個減函數(shù)是故答案為:fx三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)將函數(shù)解析式化簡整理,然后求出最值,進而得到,即可求出結(jié)果;(2)結(jié)合正弦型函數(shù)圖象,解三角不等式即可求出結(jié)果;(3)結(jié)合伸縮變換求出函數(shù)的解析式,進而求出零點,然后結(jié)合題意即可求出結(jié)果.【小問1詳解】因為的最大值為1,所以的最大值為,依題意,,解得【小問2詳解】由(1)知,由,得所以解得所以,使成立的x取值集合為【小問3詳解】依題意,,因為是的一個零點,所以,所以所以,因為,所以,所以t的最大值為18、(1),;(2)【解析】(1)設(shè),寫出的坐標(biāo),利用列式求解點的坐標(biāo),再寫出的坐標(biāo);(2)用坐標(biāo)表示出與,再根據(jù)平行條件的坐標(biāo)公式列式求解.【詳解】(1)設(shè),因為,,,所以,得,則;(2)由題意,,,所以,,因為與平行,所以,解得.19、(1)證明見解析(2)【解析】(1)由已知可證BC⊥平面SAC,又PM∥BC,則PM⊥面SAC,從而可證平面MAP⊥平面SAC;(2)由AC⊥平面SBC,可得∠MCB為二面角M—AC-B的平面角,過點M作MN⊥CB于N點,連接AN,則∠AMN=60°,由勾股定理可得,在中,可得,從而在中,即可求解二面角M—AC—B的平面角的正切值.【小問1詳解】證明:∵SC⊥平面ABC,∴SC⊥BC,又∵∠ACB=90°,∴AC⊥BC,又ACSC=C,∴BC⊥平面SAC,又∵P,M是SC、SB的中點,∴PM∥BC,∴PM⊥面SAC,又PM平面MAP,∴平面MAP⊥平面SAC;【小問2詳解】解:∵SC⊥平面ABC,∴SC⊥AC,又AC⊥BC,BCSC=C,∴AC⊥平面SBC,∴AC⊥CM,AC⊥CB,從而∠MCB為二面角M—AC-B的平面角,∵直線AM與直線PC所成的角為60°,∴過點M作MN⊥CB于N點,連接AN,則∠AMN=60°,在△CAN中,由勾股定理可得,在中,,在中,.20、(1);(2)或【解析】(1)先求得圓三個交點,,由和的垂直平分線得圓心,進而得半徑;(2)易得圓心到直線的距離為1,討論直線斜率不存在和存在時,利用圓心到直線的距離求解即可.試題解析:二次函數(shù)的圖像與兩坐標(biāo)軸軸的三個交點分別記為(1)線段的垂直平分線為,線段的垂直平分線,兩條中垂線的交點為圓心,又半徑,∴圓的方程為:(2)已知圓的半徑,弦長為4,所以圓心到直線的距離為1,若直線斜率不存在時,即時,滿足題意;當(dāng)直線斜率存在時,設(shè)直線斜率存在為,直線方程為,此時直線方程為:,所以直線的方程為:或.點睛:直線與圓的位置關(guān)系常用處理方法:(1)直線與圓相切處理時要利用圓心與切點連線垂直,構(gòu)建直角三角形,進而利用勾股定理可以建立等量關(guān)系;(2)直線與圓相交,利用垂徑定理也可以構(gòu)建直角三角形;(3)直線與圓相離時,當(dāng)過圓心作直線垂線時長度最小21、(1),,為正整數(shù)(2)一年中該植物在該地區(qū)可生存的月份數(shù)是【解析】(1)先利用月平均氣溫最低、最高的月份求出周期和及值,再利用最低氣溫和最高氣溫求出、值,即得到所求函數(shù)的解析式;(2)先判定函數(shù)的單調(diào)性,再代值確定符
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 紐約地鐵介紹
- 內(nèi)分泌減肥科普
- 活動策劃新年儀式方案(3篇)
- 銀行體驗活動策劃方案(3篇)
- 高中藝術(shù)班班級管理制度(3篇)
- 2026年及未來5年市場數(shù)據(jù)中國木雕屏風(fēng)行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略咨詢報告
- 《GA 648-2006交通技術(shù)監(jiān)控信息數(shù)據(jù)規(guī)范》專題研究報告:專家視角下的深度與未來展望
- 納稅知識培訓(xùn)課件
- 養(yǎng)老院入住老人財產(chǎn)管理制度
- 企業(yè)員工培訓(xùn)管理制度
- 原發(fā)性骨髓纖維化2026
- 2023-2024學(xué)年北京市海淀區(qū)清華附中八年級(上)期末數(shù)學(xué)試卷(含解析)
- TCFLP0030-2021國有企業(yè)網(wǎng)上商城采購交易操作規(guī)范
- 《油氣管道無人機智能巡檢系統(tǒng)技術(shù)管理規(guī)范》
- 牽引供電系統(tǒng)短路計算-三相對稱短路計算(高鐵牽引供電系統(tǒng))
- (完整版)第一性原理
- 安全技術(shù)勞動保護措施管理規(guī)定
- 學(xué)習(xí)主題班會課件 高三寒假攻略
- 高一年級主任工作總結(jié)(4篇)
- 論高級管理人員應(yīng)具備的財務(wù)知識
- GB/T 7354-2003局部放電測量
評論
0/150
提交評論