湖北省襄陽市重點中學2026屆數(shù)學高二上期末經(jīng)典試題含解析_第1頁
湖北省襄陽市重點中學2026屆數(shù)學高二上期末經(jīng)典試題含解析_第2頁
湖北省襄陽市重點中學2026屆數(shù)學高二上期末經(jīng)典試題含解析_第3頁
湖北省襄陽市重點中學2026屆數(shù)學高二上期末經(jīng)典試題含解析_第4頁
湖北省襄陽市重點中學2026屆數(shù)學高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省襄陽市重點中學2026屆數(shù)學高二上期末經(jīng)典試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,都有”的否定為()A.,使得 B.,使得C.,使得 D.,使得2.在空間直角坐標系中,點關(guān)于平面的對稱點的坐標是()A. B.C. D.3.對于兩個平面、,“內(nèi)有無數(shù)多個點到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.邊長為的正方形沿對角線折成直二面角,、分別為、的中點,是正方形的中心,則的大小為()A. B.C. D.5.已知橢圓的右焦點為F,短軸的一個端點為P,直線與橢圓相交于A、B兩點.若,點P到直線l的距離不小于,則橢圓C離心率的取值范圍為()A. B.C. D.6.已知點,在雙曲線上,線段的中點,則()A. B.C. D.7.已知直線過點且與直線平行,則直線方程為()A. B.C. D.8.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則()A.16 B.C.14 D.9.設(shè),“命題”是“命題”的()A.充分且不必要條件 B.必要且不充分條件C.充要條件 D.既不充分也不必要條件10.已知數(shù)列滿足,若.則的值是()A. B.C. D.11.下列說法或運算正確的是()A.B.用反證法證明“一個三角形至少有兩個銳角”時需設(shè)“一個三角形沒有銳角”C.“,”的否定形式為“,”D.直線不可能與圓相切12.將一顆骰子先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知過橢圓上的動點作圓(為圓心):的兩條切線,切點分別為,若的最小值為,則橢圓的離心率為______14.拋物線的焦點到準線的距離等于__________.15.對某市“四城同創(chuàng)”活動中100名志愿者的年齡抽樣調(diào)查統(tǒng)計后得到頻率分布直方圖(如圖),但是年齡組為的數(shù)據(jù)不慎丟失,則依據(jù)此圖可估計該市“四城同創(chuàng)”活動中志愿者年齡在的人數(shù)為________16.已知雙曲線C:的一個焦點坐標為,則其漸近線方程為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓方程為,短軸長,____________.請在①與雙曲線有相同的焦點,②離心率,③這三個條件中任選一個補充在上面的橫線上,完成以下問題.(1)求橢圓的標準方程;(2)求以點為中點的弦所在的直線方程.18.(12分)已知拋物線C:上一點到焦點F的距離為2(1)求實數(shù)p的值;(2)若直線l過C的焦點,與拋物線交于A,B兩點,且,求直線l的方程19.(12分)已知圓與x軸交于A,B兩點,P是該圓上任意一點,AP,PB的延長線分別交直線于M,N兩點.(1)若弦AP長為2,求直線PB的方程;(2)以線段MN為直徑作圓C,當圓C面積最小時,求此時圓C的方程.20.(12分)如圖,在四棱錐中,底面為菱形,,底面,,是的中點.(1)求證:平面;(2)求證:平面平面;(3)設(shè)點是平面上任意一點,直接寫出線段長度最小值.(不需證明)21.(12分)已知拋物線過點,是拋物線的焦點,直線交拋物線于另一點,為坐標原點.(1)求拋物線的方程和焦點的坐標;(2)拋物線的準線上是否存在點使,若存在請求出點坐標,若不存在請說明理由.22.(10分)已知圓O:與圓C:(1)在①,②這兩個條件中任選一個,填在下面的橫線上,并解答若______,判斷這兩個圓的位置關(guān)系;(2)若,求直線被圓C截得的弦長注:若第(1)問選擇兩個條件分別作答,按第一個作答計分

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)命題的否定的定義判斷【詳解】全稱命題的否定是特稱命題,命題“,都有”的否定為:,使得故選:A2、C【解析】根據(jù)空間里面點關(guān)于面對稱的性質(zhì)即可求解.【詳解】在空間直角坐標系中,點關(guān)于平面的對稱點的坐標是.故選:C.3、B【解析】根據(jù)平面的性質(zhì)分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有無數(shù)多個點到的距離相等,則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個點到的距離相等,故必要性成立,所以“內(nèi)有無數(shù)多個點到的距離相等”是“”的必要不充分條件.故選:B.4、B【解析】建立空間直角坐標系,以向量法去求的大小即可解決.【詳解】由題意可得平面,,則兩兩垂直以O(shè)為原點,分別以O(shè)B、OA、OC所在直線為x、y、z軸建立空間直角坐標系則,,,,又,則故選:B5、D【解析】設(shè)橢圓的左焦點為,由題可得,由點P到直線l的距離不小于可得,進而可求的范圍,即可得出離心率范圍.【詳解】設(shè)橢圓的左焦點為,P為短軸的上端點,連接,如圖所示:由橢圓的對稱性可知,A,B關(guān)于原點對稱,則,又,∴四邊形為平行四邊形,∴,又,解得:,點P到直線l距離:,解得:,即,∴,∴.故選:D.【點睛】關(guān)鍵點睛:本題考查橢圓離心率的求解,解題的關(guān)鍵是由橢圓定義得出,再根據(jù)已知條件得出.6、D【解析】先根據(jù)中點弦定理求出直線的斜率,然后求出直線的方程,聯(lián)立后利用弦長公式求解的長.【詳解】設(shè),,則可得方程組:,兩式相減得:,即,其中因為的中點為,故,故,即直線的斜率為,故直線的方程為:,聯(lián)立,解得:,由韋達定理得:,,則故選:D7、C【解析】由題意,直線的斜率為,利用點斜式即可得答案.【詳解】解:因為直線與直線平行,所以直線的斜率為,又直線過點,所以直線的方程為,即,故選:C.8、B【解析】由題意得到,根據(jù)等比數(shù)列的性質(zhì)得到,化簡,即可求解.【詳解】由,是函數(shù)的兩個不同零點,可得,根據(jù)等比數(shù)列的性質(zhì),可得則.故選:B.9、A【解析】根據(jù)充分、必要條件的概念理解,可得結(jié)果.【詳解】由,則或所以“”可推出“或”但“或”不能推出“”故命題是命題充分且不必要條件故選:A【點睛】本題主要考查充分、必要條件的概念理解,屬基礎(chǔ)題.10、D【解析】由,轉(zhuǎn)化為,再由求解.【詳解】因為數(shù)列滿足,所以,即,因為,所以,所以,故選:D11、D【解析】對于A:可以解決;對于B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”;對于C:全稱否定必須是全部否定;對于D:需要觀察出所給直線是過定點的.【詳解】A:,故錯誤;B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”,所以用反證法時應(yīng)假設(shè)只有一個銳角和沒有銳角兩種情況,故錯誤;C:的否定形式是,故錯誤;D:直線是過定點(-1,0),而圓,圓心為(2,0),半徑為4,定點(-1,0)到圓心的距離為2-(-1)=3<4,故定點在圓內(nèi),故正確;故選:D.12、B【解析】基本事件總數(shù),再利用列舉法求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件的個數(shù),由此能求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點數(shù)之和,基本事件總數(shù),點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件有:,,,,,,,,共8個,則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由橢圓方程和圓的方程可確定橢圓焦點、圓心和半徑;當最小時,可知,此時;根據(jù)橢圓性質(zhì)知,解方程可求得,進而得到離心率.【詳解】由橢圓方程知其右焦點為;由圓的方程知:圓心為,半徑為;當最小時,則最小,即,此時最?。淮藭r,;為橢圓右頂點時,,解得:,橢圓的離心率.故答案為:.14、【解析】先將拋物線方程,轉(zhuǎn)化為標準方程,求得焦點坐標,準線方程即可.【詳解】因為拋物線方程是,轉(zhuǎn)化為標準方程得:,所以拋物線開口方向向右,焦點坐標準線方程為:,所以焦點到準線的距離等于.故答案為:【點睛】本題主要考查拋物線的標準方程,還考查了理解辨析的能力,屬于基礎(chǔ)題.15、【解析】首先根據(jù)頻率分布直方圖計算出年齡在的頻率,從而可計算出年齡在的人數(shù).【詳解】年齡在的頻率為,所以年齡在的人數(shù)為.故答案為:.16、【解析】根據(jù)雙曲線的定義由焦點坐標求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因為雙曲線C:的一個焦點坐標為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析,.(2).【解析】(1)若選①:求得雙曲線得雙曲線的焦點得出橢圓的,再由,可求得橢圓的標準方程;若選②:根據(jù)已知條件和橢圓的離心率可求得,從而得橢圓的標準方程;若選③:由已知建立方程,求解可求得,從而得橢圓的標準方程.(2)設(shè)直線的斜率為k,所求的直線方程為,代入橢圓的方程并整理得,設(shè)直線與橢圓的交點為,由根與系數(shù)的關(guān)系和中點坐標公式可求得答案.【小問1詳解】解:若選①:由雙曲線得雙曲線的焦點和,因為橢圓與雙曲線有相同的焦點,所以橢圓的,又,所以,所以,所以橢圓的標準方程為;若選②:因為,所以,又離心率,所以,即,解得,所以橢圓的標準方程為;若選③:因為,所以,即,又,解得,,所以橢圓的標準方程為;【小問2詳解】解:由題意得直線的斜率必存在,設(shè)直線的斜率為k,所求的直線方程為,代入橢圓的方程并整理得,設(shè)直線與橢圓的交點為,則,因為點為AB中點,所以,解得,所以所求的直線方程為,即.18、(1)2(2)或【解析】(1)根據(jù)拋物線上的點到焦點與準線的距離相等可得到結(jié)果(2)通過聯(lián)立拋物線與直線方程利用韋達定理求解關(guān)系式即可得到結(jié)果【小問1詳解】拋物線焦點為,準線方程為,因為點到焦點F距離為2,所以,解得【小問2詳解】拋物線C的焦點坐標為,當斜率不存在時,可得不滿足題意,當斜率存在時,設(shè)直線l的方程為聯(lián)立方程,得,顯然,設(shè),,則,所以,解得所以直線l的方程為或19、(1)或;(2).【解析】(1)根據(jù)圓的直徑的性質(zhì),結(jié)合銳角三角函數(shù)定義進行求解即可;(2)根據(jù)題意,結(jié)合基本不等式和圓的標準方程進行求解即可.【小問1詳解】在方程中,令,解得,或,因為AP,PB的延長線分別交直線于M,N兩點,所以,圓心在x軸上,所以,因為,,所以有,當P在x軸上方時,直線PB的斜率為:,所以直線PB的方程為:,當P在x軸下方時,直線PB的斜率為:,所以直線PB的方程為:,因此直線PB的方程為或;【小問2詳解】由(1)知:,,所以設(shè)直線的斜率為,因此直線的斜率為,于是直線的方程為:,令,,即直線的方程為:,令,,即,因為同號,所以,當且僅當時取等號,即當時取等號,于是有以線段MN為直徑作圓C,當圓C面積最小時,此時最小,當時,和,中點坐標為:,半徑為,所以圓的方程為:,同理當時,和,中點坐標為:,半徑為,所以圓的方程為:,綜上所述:圓C的方程為.20、(1)證明見解析(2)證明見解析(3)【解析】(1)設(shè),連結(jié),根據(jù)中位線定理即可證,再根據(jù)線面平行的判定定理,即可證明結(jié)果;(2)由菱形的性質(zhì)可知,可證,又底面,可得,再根據(jù)面面垂直的判定定理,即可證明結(jié)果;(3)根據(jù)等體積法,即,經(jīng)過計算直接寫出結(jié)果即可.【小問1詳解】證明:設(shè),連結(jié).因為底面為菱形,所以為的中點,又因為E是PC的中點,所以.又因為平面,平面,所以平面.【小問2詳解】證明:因為底面為菱形,所以.因為底面,所以.又因為,所以平面.又因為平面,所以平面平面.【小問3詳解】解:線段長度的最小值為.21、(1)拋物線的方程為,焦點坐標為(2)存在,且【解析】(1)根據(jù)點坐標求得,進而求得拋物線的方程和焦點的坐標.(2)設(shè),根據(jù)列方程,化簡求得的坐標.【小問1詳解】將代入得,所以拋物線的方程為,焦點坐標為.【小問2詳解】存在,理由如下:直線的方程為,或,即.拋物線的準線,設(shè),,即,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論