遼寧省四校2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁
遼寧省四校2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁
遼寧省四校2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁
遼寧省四校2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁
遼寧省四校2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

遼寧省四校2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.對(duì)于公差為1的等差數(shù)列,;公比為2的等比數(shù)列,,則下列說法不正確的是()A.B.C.數(shù)列為等差數(shù)列D.數(shù)列的前項(xiàng)和為2.已知點(diǎn)A、是拋物線:上的兩點(diǎn),且線段過拋物線的焦點(diǎn),若的中點(diǎn)到軸的距離為3,則()A.3 B.4C.6 D.83.若,則的虛部為()A. B.C. D.4.已知f(x)是定義在R上的偶函數(shù),當(dāng)時(shí),,且f(-1)=0,則不等式的解集是()A. B.C. D.5.“x>1”是“x>0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.若命題“或”與命題“非”都是真命題,則A.命題與命題都是真命題B.命題與命題都是假命題C.命題是真命題,命題是假命題D.命題是假命題,命題是真命題7.已知,是空間中的任意兩個(gè)非零向量,則下列各式中一定成立的是()A. B.C. D.8.已知集合A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B=()A.{-2,-1,0,1} B.{-1,0,1}C.{-2,-1} D.{-2,-1,0}9.已知點(diǎn),分別在雙曲線的左右兩支上,且關(guān)于原點(diǎn)對(duì)稱,的左焦點(diǎn)為,直線與的左支相交于另一點(diǎn),若,且,則的離心率為()A B.C. D.10.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值是()A. B.C. D.411.若正方體ABCD-A1B1C1D1的棱長為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.12.在三棱錐中,,,,若,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線與曲線沒有公共點(diǎn),則實(shí)數(shù)的取值范圍是____________14.已知單位空間向量,,滿足,.若空間向量滿足,且對(duì)于任意實(shí)數(shù),的最小值是2,則的最小值是___________.15.若,若,則______16.函數(shù)的單調(diào)遞減區(qū)間是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在數(shù)列中,,,且對(duì)任意的,都有.(1)數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列,求數(shù)列的前項(xiàng)和.18.(12分)如圖,四棱錐中,底面ABCD是邊長為2的菱形,,,且,E為PD的中點(diǎn)(1)求證:;(2)求二面角的大小;(3)在側(cè)棱PC上是否存在點(diǎn)F,使得點(diǎn)F到平面AEC的距離為?若存在,求出的值;若不存在,請(qǐng)說明理由19.(12分)在等差數(shù)列中,,前10項(xiàng)和(1)求列通項(xiàng)公式;(2)若數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,求的前8項(xiàng)和20.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓E:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為.點(diǎn)P是橢圓上的一動(dòng)點(diǎn),且P在第一象限.記的面積為S,當(dāng)時(shí),.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)如圖,PF1,PF2的延長線分別交橢圓于點(diǎn)M,N,記和的面積分別為S1和S2.(i)求證:存在常數(shù)λ,使得成立;(ii)求S2-S1的最大值.21.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點(diǎn).(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.22.(10分)如圖,在四棱錐中,底面為直角梯形,底面分別為的中點(diǎn),(1)求證:平面平面;(2)求二面角的大小

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由等差數(shù)列的通項(xiàng)公式判定選項(xiàng)A正確;利用等比數(shù)列的通項(xiàng)公式求出,即判定選項(xiàng)B錯(cuò)誤;利用對(duì)數(shù)的運(yùn)算和等差數(shù)列的定義判定選項(xiàng)C正確;利用錯(cuò)位相減法求和,即判定選項(xiàng)D正確.【詳解】對(duì)于A:由條件可得,,即選項(xiàng)A正確;對(duì)于B:由條件可得,,即選項(xiàng)B錯(cuò)誤;對(duì)于C:因?yàn)?,所以,則,即數(shù)列是首項(xiàng)和公差均為的等差數(shù)列,即選項(xiàng)C正確;對(duì)于D:,設(shè)數(shù)列的前項(xiàng)和為,則,,上面兩式相減可得,所以,即選項(xiàng)D正確.故選:B.2、D【解析】直接根據(jù)拋物線焦點(diǎn)弦長公式以及中點(diǎn)坐標(biāo)公式求結(jié)果【詳解】設(shè),,則的中點(diǎn)到軸的距離為,則故選:D3、A【解析】根據(jù)復(fù)數(shù)的運(yùn)算化簡,由復(fù)數(shù)概念即可求解.【詳解】因?yàn)?,所以的虛部為,故選:A4、D【解析】根據(jù)題意可知,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞增,再結(jié)合函數(shù)f(x)的奇偶性得到函數(shù)的奇偶性,并根據(jù)奇偶性得到單調(diào)性,進(jìn)而解得答案.【詳解】由題意,當(dāng)時(shí),,則函數(shù)在上單調(diào)遞增,而f(x)是定義在R上的偶函數(shù),容易判斷是定義在上的奇函數(shù),于是在上單調(diào)遞增,而f(-1)=0,則.于是當(dāng)時(shí),.故選:D.5、A【解析】根據(jù)充分、必要條件間的推出關(guān)系,判斷“x>1”與“x>0”的關(guān)系.【詳解】“x>1”,則“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要條件.故選:A.6、D【解析】因?yàn)榉莗為真命題,所以p為假命題,又p或q為真命題,所以q為真命題,選D.7、C【解析】利用向量數(shù)量積的定義及運(yùn)算性質(zhì)逐一分析各選項(xiàng)即可得答案.【詳解】解:對(duì)A:因?yàn)?,所以,故選項(xiàng)A錯(cuò)誤;對(duì)B:因?yàn)?,故選項(xiàng)B錯(cuò)誤;對(duì)C:因?yàn)椋蔬x項(xiàng)C正確;對(duì)D:因?yàn)?,故選項(xiàng)D錯(cuò)誤故選:C.8、D【解析】根據(jù)集合交集的運(yùn)算法則計(jì)算即可.【詳解】∵A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B={-2,-1,0}.故選:D.9、D【解析】根據(jù)雙曲線的定義及,,應(yīng)用勾股定理,可得關(guān)系,即可求解.【詳解】設(shè)雙曲線的右焦點(diǎn)為,連接,,,如圖:根據(jù)雙曲線的對(duì)稱性及可知,四邊形為矩形.設(shè)因?yàn)椋?,又,所以?在和中,,①,②由②化簡可得,③把③代入①可得:,所以,故選:D【點(diǎn)睛】本題主要考查了雙曲線的定義,雙曲線的簡單幾何性質(zhì),勾股定理,屬于難題.10、B【解析】根據(jù)題意,由等比數(shù)列的性質(zhì)可知成等比數(shù)列,從而可得,即可求出的結(jié)果.【詳解】解:已知等比數(shù)列的前項(xiàng)和為,,由等比數(shù)列的性質(zhì)得:成等比數(shù)列,且公比不為-1即成等比數(shù)列,,,.故選:B.11、B【解析】先證明點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標(biāo)系,利用向量法求解.【詳解】因?yàn)槠矫嫫矫?,所以A1C1//平面ACD1,則點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標(biāo)系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因?yàn)槠矫?,所以平面,所以是平面一個(gè)法向量,所以平面ACD1的一個(gè)法向量為=(1,1,1),故所求的距離為.故選:B【點(diǎn)睛】方法點(diǎn)睛:求點(diǎn)到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據(jù)已知條件靈活選擇方法求解.12、B【解析】根據(jù)空間向量的基本定理及向量的運(yùn)算法則計(jì)算即可得出結(jié)果.【詳解】連接,因?yàn)?,所以,因?yàn)?,所以,所?故選:B二、填空題:本題共4小題,每小題5分,共20分。13、;【解析】可化簡曲線的方程為,作出其圖形,數(shù)形結(jié)合求臨界值即可求解.【詳解】由可得,所以曲線為以為圓心,的下半圓,作出圖形如圖:當(dāng)直線過點(diǎn)時(shí),,可得,當(dāng)直線與半圓相切時(shí),則圓心到直線的距離,可得:或(舍),若直線與曲線沒有公共點(diǎn),由圖知:或,所以實(shí)數(shù)的取值范圍是:,故答案為:14、【解析】以,方向?yàn)檩S,垂直于,方向?yàn)檩S建立空間直角坐標(biāo)系,根據(jù)條件求得坐標(biāo),由二次函數(shù)求最值即可求得最小值.【詳解】以,方向?yàn)檩S,垂直于,方向?yàn)檩S建立空間直角坐標(biāo)系,則,由可設(shè),由是單位空間向量可得,由可設(shè),,當(dāng),的最小值是2,所以,取,,,當(dāng)時(shí),最小值為.故答案為:.15、2【解析】首先利用二項(xiàng)展開式的通項(xiàng)公式,求,再利用賦值法求系數(shù)的和以及【詳解】展開式的通項(xiàng)為,令,則,即,故,令,得.又,所以故故答案為:16、【解析】首先對(duì)求導(dǎo),可得,令,解可得答案【詳解】解:由得,故的單調(diào)遞減區(qū)間是故答案為:【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由遞推式可得,根據(jù)等比數(shù)列的定義寫出通項(xiàng)公式,再由累加法求的通項(xiàng)公式;(2)由(1)可得,再應(yīng)用裂項(xiàng)相消法求前項(xiàng)和【小問1詳解】由可得:,又,,∴,則數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,∴.∴.【小問2詳解】∵,∴∴.18、(1)證明見解析(2)(3)存在;【解析】(1)作出輔助線,證明線面垂直,進(jìn)而證明線線垂直;(2)建立空間直角坐標(biāo)系,用空間向量求解二面角;(3)設(shè)出F點(diǎn)坐標(biāo),用空間向量的點(diǎn)到平面距離公式進(jìn)行求解.【小問1詳解】證明:連接BD,設(shè)BD與AC交于點(diǎn)O,連接PO.因?yàn)?,所以四棱錐中,底面ABCD是邊長為2的菱形,則又,所以平面PBD,因?yàn)槠矫鍼BD,所以【小問2詳解】因?yàn)椋?,所以由?)知平面ABCD,以O(shè)為原點(diǎn),,,的方向?yàn)閤軸,y軸,z軸正方向,建立空間直角坐標(biāo)系,則,,,,,,所以,,,設(shè)平面AEC的法向量,則,即,令,則平面ACD的法向量,,所以二面角為;【小問3詳解】存在點(diǎn)F到平面AEC的距離為,理由如下:由(2)得,,設(shè),則,所以點(diǎn)F到平面AEC的距離,解得,,所以19、(1);(2)347.【解析】(1)設(shè)等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設(shè)等差數(shù)列的公差為,則解得所以(2)由題意,,所以所以的前8項(xiàng)和為20、(1)(2)(i)存在常數(shù),使得成立;(ii)的最大值為.【解析】(1)求點(diǎn)P的坐標(biāo),再利用面積和離心率,可以求出,然后就可以得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)的坐標(biāo)和直線方程,聯(lián)立方程,解出的y坐標(biāo)值與P的坐標(biāo)之間的關(guān)系,求以焦距為底邊的三角形面積;利用均值定理當(dāng)且僅當(dāng)時(shí)取等號(hào),求最大值.【小問1詳解】先求第一象限P點(diǎn)坐標(biāo):,所以P點(diǎn)的坐標(biāo)為,所以,所以橢圓E的方程為【小問2詳解】設(shè),易知直線和直線的坐標(biāo)均不為零,因?yàn)椋栽O(shè)直線的方程為,直線的方程為,由所以,因?yàn)?,,所以所以同理由所以,因?yàn)?,,所以所以,因?yàn)?,?i)所以所以存在常數(shù),使得成立.(ii),當(dāng)且僅當(dāng),時(shí)取等號(hào),所以的最大值為.21、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設(shè),以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點(diǎn),在中,、分別為和中點(diǎn),,又因平面平面,面,面,平面【小問2詳解】解:設(shè),以為坐標(biāo)原點(diǎn)如圖建系,則,,所以、,設(shè)平面的法向量則,故可取設(shè)平面的法向量,則,故可取,因?yàn)槊媾c面的夾角余弦值為,所以,即,解得,22、(1)證明見解析(2)【解析】(1)依題意可得平行四邊形是矩形,即可得到,再由及面面垂直的性質(zhì)定理得到平面,從而得到,即可得到平面,從而得證;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論