2026屆全國百強校山西大學(xué)附屬中學(xué)高二上數(shù)學(xué)期末預(yù)測試題含解析_第1頁
2026屆全國百強校山西大學(xué)附屬中學(xué)高二上數(shù)學(xué)期末預(yù)測試題含解析_第2頁
2026屆全國百強校山西大學(xué)附屬中學(xué)高二上數(shù)學(xué)期末預(yù)測試題含解析_第3頁
2026屆全國百強校山西大學(xué)附屬中學(xué)高二上數(shù)學(xué)期末預(yù)測試題含解析_第4頁
2026屆全國百強校山西大學(xué)附屬中學(xué)高二上數(shù)學(xué)期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆全國百強?!可轿鞔髮W(xué)附屬中學(xué)高二上數(shù)學(xué)期末預(yù)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.第24屆冬季奧林匹克運動會,將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運史上第一個舉辦過夏季奧林匹克運動會和冬季奧林匹克運動會的城市.根據(jù)安排,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結(jié)構(gòu)鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是兩個“相似橢圓”(離心率相同的兩個橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長軸一端點A和短軸一端點B分別向內(nèi)層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.2.展開式中第3項的二項式系數(shù)為()A.6 B.C.24 D.3.已知點的坐標(biāo)為(5,2),F(xiàn)為拋物線的焦點,若點在拋物線上移動,當(dāng)取得最小值時,則點的坐標(biāo)是A.(1,) B.C. D.4.已知,,若直線上存在點P,滿足,則l的傾斜角的取值范圍是()A. B.C D.5.已知直線與直線垂直,則()A. B.C. D.36.已知函數(shù),則函數(shù)在區(qū)間上的最小值為()A. B.C. D.7.設(shè)命題,則為A. B.C. D.8.復(fù)數(shù),則對應(yīng)的點所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知圓,直線,則直線l被圓C所截得的弦長的最小值為()A.2 B.3C.4 D.510.南宋數(shù)學(xué)家楊輝在《詳解九章算術(shù)法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列,這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23,則該數(shù)列的第31項為()A.336 B.467C.483 D.60111.已知m,n表示兩條不同直線,表示兩個不同平面.設(shè)有兩個命題::若,則;:若,則.則下列命題中為真命題的是()A. B.C. D.12.在平面上給定相異兩點,設(shè)點在同一平面上且滿足,當(dāng)且時,點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點,為雙曲線的虛軸端點,動點滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,向量,若,則實數(shù)的值為________.14.已知函數(shù)若存在,使得成立,則實數(shù)的取值范圍是_______________15.若平面法向量,直線的方向向量為,則與所成角的大小為___________.16.已知點在拋物線上,那么點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標(biāo)為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面四邊形為角梯形,,,,O為的中點,,.(1)證明:平面;(2)若,求平面與平面所成夾角的余弦值.18.(12分)如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.(I)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.19.(12分)2021年2月12日,辛丑牛年大年初一,由賈玲導(dǎo)演的電影《你好,李煥英》上映,截至到2月21日22點8分,票房攀升至40.25億,反超同期上映的《唐人街探案3》,迎來了2021春節(jié)檔最具戲劇性的一幕.正是因為影片中母女間的這份簡單、純粹、誠摯的情感觸碰了人們內(nèi)心柔軟的地方,打動了萬千觀眾,才贏得了良好的口碑,不少觀眾都流下了感動的淚水.影片結(jié)束后,某電影院工作人員當(dāng)日隨機抽查了100名觀看《你好,煥英》的觀眾,詢問他們在觀看影片的過程中是否“流淚”,得到以下表格:男性觀眾女性觀眾合計流淚20沒有流淚520合計(1)完成表格中的數(shù)據(jù),并判斷是否有99.9%的把握認(rèn)為觀眾在觀看影片的過程中流淚與性別有關(guān)?(2)以分層抽樣的方式,從流淚與沒有流淚的觀眾中抽取5人,然后從這5人中再隨機抽取2人,求這2人都流淚的概率附:0.1000.0500.0100.0012.7063.8416.63510.828,20.(12分)公差不為0的等差數(shù)列中,,且成等比數(shù)列(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前n項和為.若,求的取值范圍21.(12分)在等比數(shù)列中,是與的等比中項,與的等差中項為6(1)求的通項公式;(2)設(shè),求數(shù)列前項和22.(10分)設(shè)p:關(guān)于x的不等式有解,q:.(1)若p為真命題,求實數(shù)m的取值范圍;(2)若為假命題,為真命題,求實數(shù)m的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)內(nèi)層橢圓的方程為,可得外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結(jié)合題意求得,進而求得離心率.【詳解】設(shè)內(nèi)層橢圓方程為,因為內(nèi)外層的橢圓的離心率相同,可設(shè)外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,整理得,由,整理得,設(shè)切線的方程為,同理可得,因為兩切線斜率之積等于,可得,可得,所以離心率為.故選:C.2、A【解析】根據(jù)二項展開式的通項公式,即可求解.【詳解】由題意,二項式展開式中第3項,所以展開式中第3項的二項式系數(shù)為.故選:A.3、D【解析】過作準(zhǔn)線的垂線,垂足為,則,當(dāng)且僅當(dāng)三點共線時等號成立,此時,故,所以,選D4、A【解析】根據(jù)題意,求得直線恒過的定點,數(shù)形結(jié)合只需求得線段與直線有交點時的斜率,結(jié)合斜率和傾斜角的關(guān)系即可求得結(jié)果.【詳解】對直線,變形為,故其恒過定點,若直線存在點P,滿足,只需直線與線段有交點即可.數(shù)形結(jié)合可知,當(dāng)直線過點時,其斜率取得最大值,此時,對應(yīng)傾斜角;當(dāng)直線過點時,其斜率取得最小值,此時,對應(yīng)傾斜角為.根據(jù)斜率和傾斜角的關(guān)系,要滿足題意,直線的傾斜角的范圍為:.故選:A.5、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.6、B【解析】根據(jù)已知條件求得以及,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可求得函數(shù)在區(qū)間上的最小值.【詳解】因為,故可得,則,又,令,解得,令,解得,故在單調(diào)遞減,在單調(diào)遞增,又,故在區(qū)間上的最小值為.故選:.7、C【解析】特稱命題的否定為全稱命題,所以命題的否命題應(yīng)該為,即本題的正確選項為C.8、C【解析】化簡復(fù)數(shù),根據(jù)復(fù)數(shù)的幾何意義,即可求解.【詳解】由題意,復(fù)數(shù),所以復(fù)數(shù)對應(yīng)的點為位于第三象限.故選:C.9、C【解析】直線l過定點D(1,1),當(dāng)時,弦長最短.【詳解】由,圓心,半徑,,由,故直線l過定點,∵,故D在圓C內(nèi)部,直線l始終與圓相交,當(dāng)時,直線l被圓截得的弦長最短,,弦長=.故選:C.10、B【解析】先由遞推關(guān)系利用累加法求出通項公式,直接帶入即可求得.【詳解】根據(jù)題意,數(shù)列2,3,5,8,12,17,23……滿足,,所以該數(shù)列的第31項為.故選:B11、B【解析】利用直線與平面,平面與平面的位置關(guān)系判斷2個命題的真假,再利用復(fù)合命題的真值表判斷選項的正誤即可【詳解】,表示兩條不同直線,,表示兩個不同平面:若,,則也可能,也可能與相交,所以是假命題,為真命題;:令直線的方向向量為,直線的方向向量為,若,則,則,所以是真命題,所以為假命題;所以為假命題,是真命題,為假命題,是真命題,所以為假命題故選:12、C【解析】先求動點的軌跡方程,再根據(jù)面積的最大值求得,根據(jù)的面積最小值求,由此可求雙曲線的離心率.【詳解】設(shè),,,依題意得,即,兩邊平方化簡得,所以動點的軌跡是圓心為,半徑的圓,當(dāng)位于圓的最高點時的面積最大,所以,解得;當(dāng)位于圓的最左端時的面積最小,所以,解得,故雙曲線的離心率為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù),由求解.【詳解】因為向量,向量,且,所以,解得,故答案為:214、【解析】分離參數(shù)法得到能成立,構(gòu)造函數(shù),求出的最小值,即可求出實數(shù)a的取值范圍.【詳解】由得.設(shè),則存在,使得成立,即能成立,所以能成立,所以.又令,由對勾函數(shù)的性質(zhì)可得:在上,t(x)單調(diào)遞增,所以當(dāng)x=2時,t有最小值,所以實數(shù)a的取值范圍是.故答案為:【點睛】導(dǎo)數(shù)的應(yīng)用主要有:(1)利用導(dǎo)函數(shù)幾何意義求切線方程;(2)利用導(dǎo)數(shù)研究原函數(shù)的單調(diào)性,求極值(最值);(3)利用導(dǎo)數(shù)求參數(shù)的取值范圍.15、##【解析】設(shè)直線與平面所成角為,則,直接利用直線與平面所成的角的向量計算公式,即可求出直線與平面所成的角【詳解】解:已知直線的方向向量為,平面的法向量為,設(shè)直線與平面所成角為,則,,,所以直線與平面所成角為.故答案為:.16、【解析】由拋物線定義可得,由此可知當(dāng)為與拋物線的交點時,取得最小值,進而求得點坐標(biāo).【詳解】由題意得:拋物線焦點為,準(zhǔn)線為作,垂直于準(zhǔn)線,如下圖所示:由拋物線定義知:(當(dāng)且僅當(dāng)三點共線時取等號)即的最小值為,此時為與拋物線的交點故答案為【點睛】本題考查拋物線線上的點到焦點的距離與到定點距離之和最小的相關(guān)問題的求解,關(guān)鍵是能夠熟練應(yīng)用拋物線定義確定最值取得的位置.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)連接,可通過證明,得平面;(2)以O(shè)為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,求出平面的法向量和平面的法向量,通過向量的夾角公式可得答案.【小問1詳解】如圖,連接,在中,由可得.因為,,所以,,因為,,,所以,所以.又因為,平面,,所以平面.【小問2詳解】由(1)可知,,,兩兩垂直,以O(shè)為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,則,,,,.由,有,則,設(shè)平面的法向量為,由,,有,取,則,,可得平面的一個法向量為.設(shè)平面的法向量為,由,,有,取,則,,可得平面的一個法向量為.由,,,可得平面與平面所成夾角的余弦值為.18、(Ⅰ)見解析;(Ⅱ).【解析】本題考查線面平行、線線平行、向量法等基礎(chǔ)知識,考查空間想象能力、分析問題的能力、計算能力.第一問,利用線面平行的定理,先證明線線平行,再證明線面平行;第二問,可以先找到線面角,再在三角形中解出正弦值,還可以用向量法建立直角坐標(biāo)系解出正弦值.試題解析:(Ⅰ)在梯形ABCD中,AB與CD不平行.延長AB,DC,相交于點M(M∈平面PAB),點M即為所求的一個點.理由如下:由已知,BC∥ED,且BC=ED.所以四邊形BCDE是平行四邊形.從而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(說明:延長AP至點N,使得AP=PN,則所找的點可以是直線MN上任意一點)(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.從而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.過點A作AH⊥CE,交CE的延長線于點H,連接PH.易知PA⊥平面ABCD,從而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.過A作AQ⊥PH于Q,則AQ⊥平面PCE.所以APH是PA與平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.從而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A為原點,以,的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)設(shè)平面PCE的法向量為n=(x,y,z),由得設(shè)x=2,解得n=(2,-2,1).設(shè)直線PA與平面PCE所成角為α,則sinα==.所以直線PA與平面PCE所成角的正弦值為.考點:線線平行、線面平行、向量法.19、(1)填表見解析;有99.9%的把握認(rèn)為觀眾在觀看影片的過程中流淚與性別有關(guān);(2)【解析】(1)由已知數(shù)據(jù)可完善列聯(lián)表,然后計算可得結(jié)論;(2)根據(jù)分層抽樣定義求出5人中流淚與沒有流淚的觀眾人數(shù)并編號,用列舉法寫出作任取2人的所有基本事件,并得出2人都流淚的基本事件,計數(shù)后可計算概率【詳解】解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論