2026屆江西撫州七校聯(lián)考高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第1頁
2026屆江西撫州七校聯(lián)考高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第2頁
2026屆江西撫州七校聯(lián)考高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第3頁
2026屆江西撫州七校聯(lián)考高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第4頁
2026屆江西撫州七校聯(lián)考高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆江西撫州七校聯(lián)考高二數(shù)學(xué)第一學(xué)期期末綜合測試試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量,且與互相垂直,則k=()A. B.C. D.2.直線的傾斜角為()A. B.C. D.3.如果向量,,共面,則實(shí)數(shù)的值是()A. B.C. D.4.若數(shù)列滿足,,則數(shù)列的通項(xiàng)公式為()A. B.C. D.5.若構(gòu)成空間的一個(gè)基底,則下列向量能構(gòu)成空間的一個(gè)基底的是()A.,, B.,,C.,, D.,,6.古希臘數(shù)學(xué)家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)且的點(diǎn)的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長軸的端點(diǎn),為橢圓短軸的端點(diǎn),,分別為橢圓的左右焦點(diǎn),動(dòng)點(diǎn)滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.7.設(shè)斜率為2的直線l過拋物線()的焦點(diǎn)F,且和y軸交于點(diǎn)A,若(O為坐標(biāo)原點(diǎn))的面積為4,則拋物線方程為()A. B.C. D.8.中國古代數(shù)學(xué)著作算法統(tǒng)宗中有這樣一個(gè)問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見首日行里數(shù),請(qǐng)公仔細(xì)算相還.”其大意為:有一個(gè)人走里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,恰好走了天到達(dá)目的地,則該人第一天走的路程為()A.里 B.里C.里 D.里9.在數(shù)列中,,則的值為()A. B.C. D.以上都不對(duì)10.雙曲線的焦點(diǎn)到漸近線的距離為()A. B.C. D.11.已知1與5的等差中項(xiàng)是,又1,,,8成等比數(shù)列,公比為,則的值為()A.5 B.4C.3 D.612.設(shè)是定義在R上的函數(shù),其導(dǎo)函數(shù)為,滿足,若,則()A. B.C. D.a,b的大小無法判斷二、填空題:本題共4小題,每小題5分,共20分。13.美學(xué)四大構(gòu)件是:史詩、音樂、造型(繪畫、建筑等)和數(shù)學(xué).素描是學(xué)習(xí)繪畫的必要一步,它包括明暗素描和結(jié)構(gòu)素描,而學(xué)習(xí)幾何體結(jié)構(gòu)素描是學(xué)習(xí)素描最重要的一步.某同學(xué)在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現(xiàn)“切面”是一個(gè)橢圓,若切面圓柱體的最長母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個(gè)底角為45°的直角梯形(如圖所示),則該橢圓的離心率為_____.14.已知內(nèi)角A,B,C的對(duì)邊為a,b,c,已知,且,則c的最小值為__________.15.若滿足約束條件,則的最大值為_____________16.某中學(xué)高三(2)班甲,乙兩名同學(xué)自高中以來每次考試成績的莖葉圖如圖所示,則甲的中位數(shù)與乙的極差的和為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足:成等差數(shù)列,成等比數(shù)列.(1)求的通項(xiàng)公式:(2)在數(shù)列的每相鄰兩項(xiàng)與間插入個(gè),使它們和原數(shù)列的項(xiàng)構(gòu)成一個(gè)新數(shù)列,數(shù)列的前項(xiàng)和記為,求及.18.(12分)已知圓:,定點(diǎn),A是圓上的一動(dòng)點(diǎn),線段的垂直平分線交半徑于P點(diǎn)(1)求P點(diǎn)的軌跡C的方程;(2)設(shè)直線過點(diǎn)且與曲線C相交于M,N兩點(diǎn),不經(jīng)過點(diǎn).證明:直線MQ的斜率與直線NQ的斜率之和為定值19.(12分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點(diǎn),滿足.(1)證明:;(2)求二面角的余弦值.20.(12分)已知圓,圓,動(dòng)圓與圓外切,且與圓內(nèi)切.(1)求動(dòng)圓圓心的軌跡的方程,并說明軌跡是何種曲線;(2)設(shè)過點(diǎn)的直線與直線交于兩點(diǎn),且滿足的面積是面積的一半,求的面積21.(12分)(1)求焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程;(2)求經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程;22.(10分)已知橢圓:的長軸長是短軸長的倍,且經(jīng)過點(diǎn).(1)求的標(biāo)準(zhǔn)方程;(2)的右頂點(diǎn)為,過右焦點(diǎn)的直線與交于不同的兩點(diǎn),,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用垂直的坐標(biāo)表示列方程求解即可.【詳解】由與互相垂直得,解得故選:C.2、D【解析】若直線傾斜角為,由題設(shè)有,結(jié)合即可得傾斜角的大小.【詳解】由直線方程,若其傾斜角為,則,而,∴.故選:D3、B【解析】設(shè),由空間向量的坐標(biāo)運(yùn)算可得出方程組,即可解得的值.【詳解】由于向量,,共面,設(shè),可得,解得.故選:B.4、B【解析】根據(jù)等差數(shù)列的定義和通項(xiàng)公式直接得出結(jié)果.【詳解】因?yàn)?,所以?shù)列是等差數(shù)列,公差為1,所以.故選:B5、B【解析】由空間向量內(nèi)容知,構(gòu)成基底的三個(gè)向量不共面,對(duì)選項(xiàng)逐一分析【詳解】對(duì)于A:,因此A不滿足題意;對(duì)于B:根據(jù)題意知道,,不共面,而和顯然位于向量和向量所成平面內(nèi),與向量不共面,因此B正確;對(duì)于C:,故C不滿足題意;對(duì)于D:顯然有,選項(xiàng)D不滿足題意.故選:B6、A【解析】由題可得動(dòng)點(diǎn)M的軌跡方程,可得,,即求.【詳解】設(shè),,由,可得=2,化簡得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A7、B【解析】根據(jù)拋物線的方程寫出焦點(diǎn)坐標(biāo),求出直線的方程、點(diǎn)的坐標(biāo),最后根據(jù)三角形面積公式進(jìn)行求解即可.【詳解】拋物線的焦點(diǎn)的坐標(biāo)為,所以直線的方程為:,令,解得,因此點(diǎn)的坐標(biāo)為:,因?yàn)槊娣e為4,所以有,即,,因此拋物線的方程為.故選:B.8、C【解析】建立等比數(shù)列的模型,由等比數(shù)列的前項(xiàng)和公式求解【詳解】記第天走的路程為里,則是等比數(shù)列,,,故選:C9、C【解析】由數(shù)列的遞推公式可先求數(shù)列的前幾項(xiàng),從而發(fā)現(xiàn)數(shù)列的周期性的特點(diǎn),進(jìn)而可求.【詳解】解:,數(shù)列是以3為周期的數(shù)列故選:【點(diǎn)睛】本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的項(xiàng),解題的關(guān)鍵是由遞推關(guān)系發(fā)現(xiàn)數(shù)列的周期性的特點(diǎn),屬于基礎(chǔ)題.10、D【解析】根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程可得雙曲線的焦點(diǎn)坐標(biāo)以及漸近線方程,由點(diǎn)到直線的距離公式計(jì)算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點(diǎn)坐標(biāo)為,其漸近線方程為,即,則其焦點(diǎn)到漸近線的距離;故選D.【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是求出雙曲線的漸近線與焦點(diǎn)坐標(biāo).11、A【解析】由等差中項(xiàng)的概念列式求得值,再由等比數(shù)列的通項(xiàng)公式列式求解,則答案可求.【詳解】由題意,,則;又1,,,8成等比數(shù)列,公比為,,即,,故選:.12、A【解析】首先構(gòu)造函數(shù),再利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可判斷選項(xiàng).【詳解】設(shè),,所以函數(shù)在單調(diào)遞增,即,所以,那么,即.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)圓柱的底面半徑為,由題意知,,橢圓的長軸長,短軸長為,可以求出的值,即可得離心率.【詳解】設(shè)圓柱的底面半徑為,依題意知,最長母線與最短母線所在截面如圖所示從而因此在橢圓中長軸長,短軸長,,故答案為:14、【解析】先利用正弦定理邊化角式子,得到,再利用正弦定理求出,根據(jù)與的關(guān)系,求得,即可求得c的最小值.【詳解】,即,又,當(dāng)最大時(shí),即,最小,且為由正弦定理得:,當(dāng)時(shí),c的最小值為故答案為:【點(diǎn)睛】方法點(diǎn)睛:在解三角形題目中,若已知條件同時(shí)含有邊和角,但不能直接使用正弦定理或余弦定理得到答案,要選擇“邊化角”或“角化邊”,變換原則常用:(1)若式子含有的齊次式,優(yōu)先考慮正弦定理,“角化邊”;(2)若式子含有的齊次式,優(yōu)先考慮正弦定理,“邊化角”;(3)若式子含有的齊次式,優(yōu)先考慮余弦定理,“角化邊”;(4)代數(shù)變形或者三角恒等變換前置;(5)同時(shí)出現(xiàn)兩個(gè)自由角(或三個(gè)自由角)時(shí),要用到.15、【解析】由下圖可得在處取得最大值,即.考點(diǎn):線性規(guī)劃.【方法點(diǎn)晴】本題考查線性規(guī)劃問題,靈活性較強(qiáng),屬于較難題型.考生應(yīng)注總結(jié)解決線性規(guī)劃問題的一般步驟(1)在直角坐標(biāo)系中畫出對(duì)應(yīng)的平面區(qū)域,即可行域;(2)將目標(biāo)函數(shù)變形為;(3)作平行線:將直線平移,使直線與可行域有交點(diǎn),且觀察在可行域中使最大(或最?。r(shí)所經(jīng)過的點(diǎn),求出該點(diǎn)的坐標(biāo);(4)求出最優(yōu)解:將(3)中求出的坐標(biāo)代入目標(biāo)函數(shù),從而求出的最大(小)值.16、111【解析】求出甲的中位數(shù)和乙的極差即得解.【詳解】解:由題得甲的中位數(shù)為,乙的極差為,所以它們的和為.故答案為:111三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】(1)根據(jù)等差數(shù)列和等比數(shù)列的通項(xiàng)公式進(jìn)行求解即可;(2)根據(jù)等差數(shù)列的通項(xiàng)公式,結(jié)合等比數(shù)列的前項(xiàng)和公式進(jìn)行求解即可.【小問1詳解】設(shè)等差數(shù)列的公差為,因?yàn)槌傻炔顢?shù)列,所以有,因成等比數(shù)列,所以,所以;【小問2詳解】由題意可知:在和之間插入個(gè),在和之間插入個(gè),,在和之間插入個(gè),此時(shí)共插入的個(gè)數(shù)為:,在和之間插入個(gè),此時(shí)共插入的個(gè)數(shù)為:,因此.18、(1);(2)證明見解析,定值為-1.【解析】(1)根據(jù)給定條件探求出,再利用橢圓定義即可得軌跡C的方程.(2)由給定條件可得直線的斜率k存在且不為0,寫出直線的方程,再聯(lián)立軌跡C的方程,借助韋達(dá)定理計(jì)算作答.【小問1詳解】圓:的圓心,半徑為8,因A是圓上一動(dòng)點(diǎn),線段的垂直平分線交半徑于P點(diǎn),則,于是得,因此,P點(diǎn)的軌跡C是以,為左右焦點(diǎn),長軸長2a=8的橢圓,短半軸長b有,所以P點(diǎn)的軌跡C的方程是.【小問2詳解】因直線過點(diǎn)且與曲線C:相交于M,N兩點(diǎn),則直線的斜率存在且不為0,又不經(jīng)過點(diǎn),即直線的斜率不等于-1,設(shè)直線的斜率為k,且,直線的方程為:,即,由消去y并整理得:,,即,則有且,設(shè),則,直線MQ的斜率,直線NQ的斜率,,所以直線MQ的斜率與直線NQ的斜率之和為定值.19、(1)證明見解析;(2).【解析】(1)設(shè)為中點(diǎn),連接,根據(jù),證明平面得到答案.(2)以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,計(jì)算各點(diǎn)坐標(biāo),計(jì)算平面和平面的法向量,根據(jù)向量夾角公式計(jì)算得到答案.【詳解】(1)設(shè)為中點(diǎn),連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,則,,,,,,由,,,即,∴,,,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)二面角的平面角為,則,∴二面角的的余弦值為.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力,建立空間直角坐標(biāo)系是解題的關(guān)鍵.20、(1)(2)或【解析】(1)設(shè)圓的半徑為,圓的半徑為,圓的半徑為,由題意,,從而可得,由橢圓的定義即可求解;(2)由題意,直線的斜率存在且不為0,設(shè),,聯(lián)立直線與橢圓方程,利用韋達(dá)定理及點(diǎn)為線段的中點(diǎn),可得,利用弦長公式求出及到直線AB的距離即可得的面積.【小問1詳解】解:圓的圓心,半徑,圓的圓心,半徑,設(shè)圓的半徑為,由題意,,所以,由橢圓的定義可知,動(dòng)圓圓心的軌跡是以,為焦點(diǎn),長軸長為的橢圓,則,所以,所以動(dòng)圓圓心的軌跡的方程為;【小問2詳解】解:由題意,直線的斜率存在且不為0,設(shè),,由,可得,所以①,②,且,即,因?yàn)榈拿娣e是面積的一半,所以點(diǎn)為線段的中點(diǎn),所以,即③,聯(lián)立①②③可得,所以,因?yàn)榈街本€AB的距離,,所以,所以當(dāng)時(shí),,當(dāng)時(shí),.所以的面積為或.21、(1);(2)或.【解析】(1)由虛軸長是12求出半虛軸b,根據(jù)雙曲線的性質(zhì)c2=a2+b2以及離心率,求出a2,寫出雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè)出拋物線方程,利用經(jīng)過,求出拋物線中的參數(shù),即可得到拋物線方程【詳解】焦點(diǎn)在x軸上,設(shè)所求雙曲線的方程為=1(a>0,b>0)由題意,得解得b=6,解得,所以焦點(diǎn)在x軸上的雙曲線的方程為(2)由于點(diǎn)P在第三象限,所以拋物線方程可設(shè)為:或(p>0)當(dāng)方程為,將點(diǎn)代入得16=4p,即p=4,拋物線方程為:;當(dāng)方程為,將點(diǎn)代入得4=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論