版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省襄陽市東風(fēng)中學(xué)2026屆高二上數(shù)學(xué)期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.考試停課復(fù)習(xí)期間,小王同學(xué)計劃將一天中的7節(jié)課全部用來復(fù)習(xí)4門不同的考試科目,每門科目復(fù)習(xí)1或2節(jié)課,則不同的復(fù)習(xí)安排方法有()種A.360 B.630C.2520 D.151202.設(shè)為拋物線焦點,直線,點為上任意一點,過點作于,則()A.3 B.4C.2 D.不能確定3.已知等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,則下列說法不正確的是()A.一定單調(diào)遞減 B.一定單調(diào)遞增C.式子-≥0恒成立 D.可能滿足=,且k≠14.下列說法中正確的是A.命題“若,則”的逆命題為真命題B.若為假命題,則均為假命題C.若為假命題,則為真命題D.命題“若兩個平面向量滿足,則不共線”的否命題是真命題.5.在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,點E是棱PC的中點,作,交PB于F.下面結(jié)論正確的個數(shù)為()①∥平面EDB;②平面EFD;③直線DE與PA所成角為60°;④點B到平面PAC的距離為.A.1 B.2C.3 D.46.設(shè)a,b,c分別是內(nèi)角A,B,C的對邊,若,,依次成公差不為0的等差數(shù)列,則()A.a,b,c依次成等差數(shù)列 B.,,依次成等差數(shù)列C.,,依次成等比數(shù)列 D.,,依次成等比數(shù)列7.在空間四邊形OABC中,,,,點M在線段OA上,且,N為BC中點,則等于()A. B.C. D.8.設(shè)點是點,,關(guān)于平面的對稱點,則()A.10 B.C. D.389.饕餮(tāotiè)紋,青銅器上常見的花紋之一,盛行于商代至西周早期,最早出現(xiàn)在距今五千年前長江下游地區(qū)的良渚文化玉器上.有人將饕餮紋的一部分畫到了方格紙上,如圖所示,每個小方格的邊長為,有一點從點出發(fā)每次向右或向下跳一個單位長度,且向右或向下跳是等可能性的,那么它經(jīng)過次跳動后恰好是沿著饕餮紋的路線到達點的概率為()A. B.C. D.10.德國數(shù)學(xué)家米勒曾提出最大視角問題,這一問題一般的描述是:已知點A、B是的ON邊上的兩個定點,C是OM邊上的一個動點,當(dāng)C在何處時,最大?問題的答案是:當(dāng)且僅當(dāng)?shù)耐饨訄A與邊OM相切于點C時,最大.人們稱這一命題為米勒定理.已知點P、Q的坐標(biāo)分別是(2,0),(4,0),R是y軸正半軸上的一動點,當(dāng)最大時,點R的縱坐標(biāo)為()A.1 B.C. D.211.已知直線與直線垂直,則實數(shù)a為()A. B.或C. D.或12.已知雙曲線的右焦點為,以為圓心,以為半徑的圓與雙曲線的一條漸近線交于,兩點,若(為坐標(biāo)原點),則雙曲線的離心率為().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.為和的等差中項,則_____________.14.?dāng)?shù)列中,,,,則______15.已知雙曲線的兩個焦點分別為,,為雙曲線上一點,且,則的值為________16.若圓的一條直徑的端點是、,則此圓的方程是_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:y2=2px(p>0)的焦點與橢圓M:=1的右焦點重合.(1)求拋物線C的方程;(2)直線y=x+m與拋物線C交于A,B兩點,O為坐標(biāo)原點,當(dāng)m為何值時,=0.18.(12分)如圖,在四棱錐中,底面為菱形,,底面,,是的中點.(1)求證:平面;(2)求證:平面平面;(3)設(shè)點是平面上任意一點,直接寫出線段長度最小值.(不需證明)19.(12分)已知各項均為正數(shù)的等比數(shù)列的前n項和為,且,(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和20.(12分)若存在實常數(shù)k和b,使得函數(shù)和對其公共定義域上的任意實數(shù)x都滿足:和恒成立,則稱此直線y=kx+b為和的“隔離直線”.已知函數(shù),.(1)證明函數(shù)在內(nèi)單調(diào)遞增;(2)證明和之間存在“隔離直線”,且b的最小值為-4.21.(12分)已知函數(shù)(Ⅰ)解關(guān)于的不等式;(Ⅱ)若關(guān)于的不等式恒成立,求實數(shù)的取值范圍22.(10分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點;(I)求異面直線A1B,AC1所成角的余弦值;(II)求直線AB1與平面C1AD所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】,先安排復(fù)習(xí)節(jié)的科目,然后安排其余科目,由此計算出不同的復(fù)習(xí)安排方法數(shù).【詳解】第步,門科目選門,安排節(jié)課,方法數(shù)有種,第步,安排其余科目,每門科目節(jié)課,方法數(shù)有種,所以不同的復(fù)習(xí)安排方法有種.故選:C2、A【解析】由拋物線方程求出準(zhǔn)線方程,由題意可得,由拋物線的定義可得,即可求解.【詳解】由可得,準(zhǔn)線為,設(shè),由拋物線的定義可得,因為過點作于,可得,所以,故選:A.3、D【解析】根據(jù)等比數(shù)列的通項公式,前n項和的意義,可逐項分析求解.【詳解】因為等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,所以當(dāng)時,由可得,故數(shù)列為增函數(shù),故B正確;由0<q<1,<0知,所以,故一定單調(diào)遞減,故A正確;因為當(dāng)時,,,所以,即-,當(dāng)時,,綜上,故C正確;若=,且k≠1,則,即,因為,故,故矛盾,所以D不正確.故選:D4、D【解析】A中,利用四種命題的的真假判斷即可;B、C中,命題“”為假命題時,、至少有一個為假命題;D中,寫出該命題的否命題,再判斷它的真假性【詳解】對于A,命題“若,則”的逆命題是:若,則;因為也成立.所以A不正確;對于B,命題“”為假命題時,、至少有一個為假命題,所以B錯誤;C錯誤;對于D,“平面向量滿足”,則不共線的否命題是,若“平面向量滿足”,則共線;由知:,一定有,,所以共線,D正確.故選:D.【點睛】本題考查了命題的真假性判斷問題,也考查了推理與判斷能力,是基礎(chǔ)題5、D【解析】①由題意連接交于,連接,則是中位線,證出,由線面平行的判定定理知∥平面;②由底面,得,再由證出平面,即得,再由是正方形證出平面,則有,再由條件證出平面;③根據(jù)邊長證明△DEO是等邊三角形即可;④根據(jù)等體積法即可求.【詳解】①如圖所示,連接交于點,連接底面是正方形,點是的中點在中,是中位線,而平面且平面,∥平面;故①正確;②如圖所示,底面,且平面,,,是等腰直角三角形,又是斜邊的中線,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正確;③如圖所示,連接AC交BD與O,連接OE,由OE是三角形PAC中位線知OE∥PA,故∠DEO為異面直線PA和DE所成角或其補角,由②可知DE=,OD=,OE=,∴△DEO是等邊三角形,∴∠DEO=60°,故③正確;④如圖所示,設(shè)B到平面PAC的距離為d,由題可知PA=AC=PC=,故,由.故④正確.故正確的有:①②③④,正確的個數(shù)為4.故選:D.6、B【解析】由等差數(shù)列的性質(zhì)得,利用正弦定理、余弦定理推導(dǎo)出,從而,,依次成等差數(shù)列.【詳解】解:∵a,b,c分別是內(nèi)角A,B,C的對邊,,,依次成公差不為0的等差數(shù)列,∴,根據(jù)正弦定理可得,∴,∴,∴,∴,,依次成等差數(shù)列.故選:B.【點睛】本題考查三個數(shù)成等差數(shù)列或等比數(shù)列的判斷,考查等差數(shù)列、等比數(shù)列的性質(zhì)、正弦定理、余弦定理等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,屬于中檔題.7、B【解析】由題意結(jié)合圖形,直接利用,求出,然后即可解答.【詳解】解:因為空間四邊形OABC如圖,,,,點M在線段OA上,且,N為BC的中點,所以.所以.故選:B.8、A【解析】寫出點坐標(biāo),由對稱性易得線段長【詳解】點是點,,關(guān)于平面的對稱點,的橫標(biāo)和縱標(biāo)與相同,而豎標(biāo)與相反,,,,直線與軸平行,,故選:A9、B【解析】本題首先可根據(jù)題意列出次跳動的所有基本事件,然后找出沿著饕餮紋的路線到達點的事件,最后根據(jù)古典概型的概率計算公式即可得出結(jié)果.【詳解】點從點出發(fā),每次向右或向下跳一個單位長度,次跳動的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿著饕餮紋的路線到達點的事件有:(下,下,右),故到達點的概率,故選:B.10、C【解析】由題意,借助米勒定理,可設(shè)出坐標(biāo),表示出的外接圓方程,然后在求解點R的縱坐標(biāo).【詳解】因為點P、Q的坐標(biāo)分別是(2,0),(4,0)是x軸正半軸上的兩個定點,點R是y軸正半軸上的一動點,根據(jù)米勒定理,當(dāng)?shù)耐饨訄A與y軸相切時,最大,由垂徑定理可知,弦的垂直平分線必經(jīng)過的外接圓圓心,所以弦的中點為(3,0),故弦中點的橫坐標(biāo)即為的外接圓半徑,即,由垂徑定理可得,圓心坐標(biāo)為,故的外接圓的方程為,所以點R的縱坐標(biāo)為.故選:C.11、B【解析】由題可得,即得.【詳解】∵直線與直線垂直,∴,解得或.故選:B.12、A【解析】設(shè)雙曲線的一條漸近線方程為,為的中點,可得,由,可知為的三等分點,用兩種方式表示,可得關(guān)于的方程組,結(jié)合即可得到雙曲線的離心率.【詳解】設(shè)雙曲線的一條漸近線方程為,為的中點,可得,由到漸近線的距離為,所以,又,所以,因為,所以,整理可得:,即,所以,可得,所以,所以雙曲線的離心率為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用等差中項的定義可求得結(jié)果.【詳解】由等差中項的定義可得.故答案為:.14、##0.5【解析】直接計算得到答案.【詳解】∵,,則,.故答案為:.15、2【解析】求得雙曲線的a,b,c,不妨設(shè)P為雙曲線右支上的點,|PF1|=m,|PF2|=n,利用雙曲線的定義、余弦定理列出方程組,求出mn即可.【詳解】雙曲線的a=2,b=1,c=,不妨設(shè)P為雙曲線右支上的點,|PF1|=m,|PF2|=n,則,①由余弦定理可得,②聯(lián)立①②可得故答案為:216、【解析】先設(shè)圓上任意一點的坐標(biāo),然后利用直徑對應(yīng)的圓周角為直角,再利用向量垂直建立方程即可【詳解】設(shè)圓上任意一點的坐標(biāo)為可得:,則有:,即解得:故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)y2=4x(2)m=﹣4或m=0【解析】(1)由橢圓的右焦點得出的值,進而得出拋物線C的方程;(2)聯(lián)立直線和拋物線方程,利用韋達定理結(jié)合數(shù)量積公式證明即可【小問1詳解】由題意,橢圓=1的右焦點為(1,0),拋物線y2=2px的焦點為(,0),所以,解得p=2,所以拋物線的方程為y2=4x;【小問2詳解】因為直線y=x+m與拋物線C交于A,B兩點,設(shè)A(x1,y1),B(x2,y2),聯(lián)立方程組,可得x2+2(m﹣2)x+m2=0,由Δ=4(m﹣2)2﹣4m2>0,解得m<1,所以x1+x2=﹣2m+4,x1x2=m2,又因為,又=(x1,y1),=(x2,y2),可得x1x2+y1y2=x1x2+(x1+m)(x2+m)=2x1x2+m(x1+x2)+m2=m2+4m=0,解得m=﹣4<1或m=0<1,故m=﹣4或m=0.18、(1)證明見解析(2)證明見解析(3)【解析】(1)設(shè),連結(jié),根據(jù)中位線定理即可證,再根據(jù)線面平行的判定定理,即可證明結(jié)果;(2)由菱形的性質(zhì)可知,可證,又底面,可得,再根據(jù)面面垂直的判定定理,即可證明結(jié)果;(3)根據(jù)等體積法,即,經(jīng)過計算直接寫出結(jié)果即可.【小問1詳解】證明:設(shè),連結(jié).因為底面為菱形,所以為的中點,又因為E是PC的中點,所以.又因為平面,平面,所以平面.【小問2詳解】證明:因為底面為菱形,所以.因為底面,所以.又因為,所以平面.又因為平面,所以平面平面.【小問3詳解】解:線段長度的最小值為.19、(1)(2)【解析】(1)由等比數(shù)列的前項和公式,等比數(shù)列的基本量運算列方程組解得和公比后可得通項公式;(2)用錯位相減法求得和【小問1詳解】設(shè)數(shù)列的公比為q,由,,得,解之得所以;【小問2詳解】,又,得,,兩式作差,得,所以20、(1)見解析(2)見解析【解析】(1)由導(dǎo)數(shù)得出在上的單調(diào)性;(2)設(shè)和之間的隔離直線為y=kx+b,由題設(shè)條件得出對任意恒成立,再由二次函數(shù)的性質(zhì)求解即可.【小問1詳解】,當(dāng)時,在上單調(diào)遞增在內(nèi)單調(diào)遞增【小問2詳解】設(shè)和之間的隔離直線為y=kx+b則對任意恒成立,即對任意恒成立由對任意恒成立,得當(dāng)時,則有符合題意;當(dāng)時,則有對任意恒成立的對稱軸為又的對稱軸為即故和之間存在“隔離直線”,且b的最小值為-4.【點睛】關(guān)鍵點睛:在解決問題一時,求了一階導(dǎo)得不了函數(shù)的單調(diào)性,再次求導(dǎo)得,進而得出在恒成立,得在上的單調(diào)性.21、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零點法去絕對值,然后再解不等式.(Ⅱ)將原函數(shù)轉(zhuǎn)化為分段函數(shù),再結(jié)合函數(shù)圖像求得其最小值.將恒成立轉(zhuǎn)化為試題解析:(Ⅰ)或或或所以原不等式解集為(Ⅱ),由函數(shù)圖像可知,所以要使恒成立,只需考點:1絕對值不等式;2恒成立問題;3轉(zhuǎn)化思想22、(I)(II)【解析】(I)以,,為x,y,z軸建立空間直角坐標(biāo)系A(chǔ)﹣xyz,可得和的坐標(biāo),可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設(shè)平面C1AD的法向量為=(x,y,z),由可得=(1,﹣1,),設(shè)直線AB1與平面C1AD所成的角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 毛中特期末題庫及答案
- 鶴壁市事業(yè)單位考試真題附答案
- 幼兒園管理考試題及答案
- 阿里云秋招面試題及答案
- 2026自然語言處理工程師招聘面試題及答案
- 沖床鉆孔加工試題及答案
- 2026黑龍江哈爾濱啟航勞務(wù)派遣有限公司派遣到哈爾濱工業(yè)大學(xué)機電工程學(xué)院機械設(shè)計系招聘考試備考題庫附答案
- 中共南充市委社會工作部關(guān)于公開招聘南充市新興領(lǐng)域黨建工作專員的(6人)考試備考題庫附答案
- 中國科學(xué)院西北高原生物研究所2026年支撐崗位招聘1人(青海)備考題庫必考題
- 會昌縣2025年縣直事業(yè)單位公開選調(diào)一般工作人員考試備考題庫附答案
- 嬰幼兒輔食添加及食譜制作
- 安全生產(chǎn)標(biāo)準(zhǔn)化對企業(yè)的影響安全生產(chǎn)
- 關(guān)于若干歷史問題的決議(1945年)
- 畢業(yè)論文8000字【6篇】
- 隨訪管理系統(tǒng)功能參數(shù)
- SH/T 0362-1996抗氨汽輪機油
- GB/T 23280-2009開式壓力機精度
- GB/T 17213.4-2015工業(yè)過程控制閥第4部分:檢驗和例行試驗
- FZ/T 73009-2021山羊絨針織品
- GB∕T 5900.2-2022 機床 主軸端部與卡盤連接尺寸 第2部分:凸輪鎖緊型
- 2011-2015廣汽豐田凱美瑞維修手冊wdl
評論
0/150
提交評論