版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北京市昌平區(qū)臨川育人學(xué)校2026屆高三上數(shù)學(xué)期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的右焦點為,過的直線交雙曲線的漸近線于兩點,且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.2.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,表示的復(fù)數(shù)位于復(fù)平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知,則()A. B. C. D.4.已知實數(shù),,函數(shù)在上單調(diào)遞增,則實數(shù)的取值范圍是()A. B. C. D.5.設(shè)等差數(shù)列的前n項和為,且,,則()A.9 B.12 C. D.6.已知復(fù)數(shù)滿足:(為虛數(shù)單位),則()A. B. C. D.7.某人用隨機模擬的方法估計無理數(shù)的值,做法如下:首先在平面直角坐標系中,過點作軸的垂線與曲線相交于點,過作軸的垂線與軸相交于點(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計出這些豆子在曲線上方的有粒,則無理數(shù)的估計值是()A. B. C. D.8.已知實數(shù),滿足約束條件,則目標函數(shù)的最小值為A. B.C. D.9.如圖所示,三國時代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(米粒大小忽略不計,?。?,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.10810.已知實數(shù),則的大小關(guān)系是()A. B. C. D.11.已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若,則雙曲線的離心率為()A. B. C.4 D.212.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為定義在上的偶函數(shù),當時,(為常數(shù)),若,則實數(shù)的值為______.14.若,則=______,=______.15.已知實數(shù)a,b,c滿足,則的最小值是______.16.如圖是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設(shè),,則的面積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距是,點是橢圓上一動點,點是橢圓上關(guān)于原點對稱的兩點(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標準方程;(Ⅱ)是拋物線上兩點,且處的切線相互垂直,直線與橢圓相交于兩點,求的面積的最大值.18.(12分)如圖,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點.(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在線段上是否存在一點,使直線與平面所成的角正弦值為,若存在求出的長,若不存在說明理由.19.(12分)如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點將沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個四棱錐.(Ⅰ)求證;(Ⅱ)若平面.①求二面角的大?。虎谠诶釶C上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.20.(12分)在平面直角坐標系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線經(jīng)過點.曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.21.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.22.(10分)已知數(shù)列中,a1=1,其前n項和為,且滿足.(1)求數(shù)列的通項公式;(2)記,若數(shù)列為遞增數(shù)列,求λ的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標,利用,求出a,b的關(guān)系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點睛】本題考查雙曲線的簡單性質(zhì),考查向量知識,考查學(xué)生的計算能力,屬于中檔題.2、A【解析】
計算,得到答案.【詳解】根據(jù)題意,故,表示的復(fù)數(shù)在第一象限.故選:.【點睛】本題考查了復(fù)數(shù)的計算,意在考查學(xué)生的計算能力和理解能力.3、C【解析】
利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號.4、D【解析】
根據(jù)題意,對于函數(shù)分2段分析:當,由指數(shù)函數(shù)的性質(zhì)分析可得①,當,由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當,若為增函數(shù),則①,
當,若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).5、A【解析】
由,可得以及,而,代入即可得到答案.【詳解】設(shè)公差為d,則解得,所以.故選:A.【點睛】本題考查等差數(shù)列基本量的計算,考查學(xué)生運算求解能力,是一道基礎(chǔ)題.6、A【解析】
利用復(fù)數(shù)的乘法、除法運算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復(fù)數(shù)的四則運算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.7、D【解析】
利用定積分計算出矩形中位于曲線上方區(qū)域的面積,進而利用幾何概型的概率公式得出關(guān)于的等式,解出的表達式即可.【詳解】在函數(shù)的解析式中,令,可得,則點,直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點睛】本題考查利用隨機模擬的思想估算的值,考查了幾何概型概率公式的應(yīng)用,同時也考查了利用定積分計算平面區(qū)域的面積,考查計算能力,屬于中等題.8、B【解析】
作出不等式組對應(yīng)的平面區(qū)域,目標函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對應(yīng)的平面區(qū)域如圖:目標函數(shù)的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.9、B【解析】
根據(jù)幾何概型的概率公式求出對應(yīng)面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,
故選:B.【點睛】本題主要考查幾何概型的概率的應(yīng)用,求出對應(yīng)的面積之比是解決本題的關(guān)鍵.10、B【解析】
根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點睛】本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.11、D【解析】
設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計算,離心率的求法,屬于基礎(chǔ)題和易錯題.12、A【解析】
根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.【點睛】本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當時,(為常數(shù))求解.【詳解】因為為定義在上的偶函數(shù),所以,又因為當時,,所以,所以實數(shù)的值為1.故答案為:1【點睛】本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運算求解的能力,屬于基礎(chǔ)題.14、10【解析】
①根據(jù)換底公式計算即可得解;②根據(jù)同底對數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點睛】此題考查對數(shù)的基本運算,涉及換底公式和同底對數(shù)加法運算,屬于基礎(chǔ)題目.15、【解析】
先分離出,應(yīng)用基本不等式轉(zhuǎn)化為關(guān)于c的二次函數(shù),進而求出最小值.【詳解】解:若取最小值,則異號,,根據(jù)題意得:,又由,即有,則,即的最小值為,故答案為:【點睛】本題考查了基本不等式以及二次函數(shù)配方求最值,屬于中檔題.16、【解析】
根據(jù)個全等的三角形,得到,設(shè),求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,所以.在三角形中,.設(shè),則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【點睛】本題考查了等邊三角形的面積計算公式、余弦定理、全等三角形的性質(zhì),考查了推理能力與計算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)設(shè)點的坐標,表達出直線的斜率之積,再根據(jù)三點均在橢圓上,根據(jù)橢圓的方程代入斜率之積的表達式列式求解即可.(Ⅱ)設(shè)直線的方程為,根據(jù)直線的斜率之積為可得,再聯(lián)立直線與橢圓的方程,表達出面積公式,再換元利用基本不等式求解即可.【詳解】(Ⅰ)設(shè),,則,又,,故,即,故,又,故.故橢圓的標準方程為.(Ⅱ)設(shè)直線的方程為,,由,故,又,故,因為處的切線相互垂直故.故直線的方程為.聯(lián)立故.故,代入韋達定理有設(shè),則.當且僅當時取等號.故的面積的最大值為.【點睛】本題主要考查了根據(jù)橢圓上的點坐標滿足的關(guān)系式求解橢圓基本量求方程的方法,同時也考查了拋物線的切線問題以及橢圓中面積的最值問題,需要根據(jù)導(dǎo)數(shù)的幾何意義求切線斜率,再換元利用基本不等式求解.屬于難題.18、(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)線段上是存在一點,,使直線與平面所成的角正弦值為.【解析】
(Ⅰ)取中點,連結(jié)、,推導(dǎo)出四邊形是平行四邊形,從而,由此能證明平面;(Ⅱ)取中點,連結(jié),,推導(dǎo)出平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值;(Ⅲ)假設(shè)在線段上是存在一點,使直線與平面所成的角正弦值為,設(shè).利用向量法能求出結(jié)果.【詳解】(Ⅰ)證明:取中點,連結(jié)、,是邊長為2的等邊三角形,,,,點為的中點,,四邊形是平行四邊形,,平面,平面,平面.(Ⅱ)解:取中點,連結(jié),,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點,平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,,1,,,0,,,1,,,0,,,,,,0,,,,,設(shè)平面的法向量,,,則,取,得,,,設(shè)平面的法向量,,,則,取,得,設(shè)二面角的平面角為,則.二面角的余弦值為.(Ⅲ)解:假設(shè)在線段上是存在一點,使直線與平面所成的角正弦值為,設(shè).則,,,,,,平面的法向量,,解得,線段上是存在一點,,使直線與平面所成的角正弦值為.【點睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查滿足正弦值的點是否存在的判斷與求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.19、Ⅰ詳見解析;Ⅱ①,②或.【解析】
Ⅰ可以通過已知證明出平面PAB,這樣就可以證明出;Ⅱ以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,可以求出相應(yīng)點的坐標,求出平面PBC的法向量為、平面PCD的法向量,利用空間向量的數(shù)量積,求出二面角的大??;求出平面PBC的法向量,利用線面角的公式求出的值.【詳解】證明:Ⅰ在圖1中,,,為平行四邊形,,,,當沿AD折起時,,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,由于平面ABCD則0,,0,,1,,0,,1,1,,1,,0,,設(shè)平面PBC的法向量為y,,則,取,得0,,設(shè)平面PCD的法向量b,,則,取,得1,,設(shè)二面角的大小為,可知為鈍角,則,.二面角的大小為.設(shè)AM與面PBC所成角為,0,,1,,,,平面PBC的法向量0,,直線AM與平面PBC所成的角為,,解得或.【點睛】本題考查了利用線面垂直證明線線垂直,考查了利用向量數(shù)量積,求二面角的大小以及通過線面角公式求定比分點問題.20、(1),;(2)【解析】
(1)利用代入法消去參數(shù)可得到直線的普通方程,利用公式可得到曲線的直角坐標方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目質(zhì)量安全投資進度控制方案
- 2025年度兵團文藝工程項目扶持實施方案
- 2025年農(nóng)村電商危機處理員突發(fā)事件預(yù)防測驗試題及真題
- 高校招生宣傳方案與實施步驟
- 企業(yè)開源節(jié)流專項行動方案
- 食堂供應(yīng)鏈管理優(yōu)化實施方案
- 企業(yè)十八項核心制度培訓(xùn)測試題
- 機電設(shè)備維護保養(yǎng)方案模板
- 高血壓患者護理方案范文
- 企業(yè)團隊建設(shè)與員工激勵方案
- (二診)綿陽市2023級高三第二次診斷考試歷史試卷A卷(含答案)
- 2026年電力交易員崗位能力認證考核題含答案
- 2026年及未來5年市場數(shù)據(jù)中國金剛石工具行業(yè)投資分析及發(fā)展戰(zhàn)略咨詢報告
- 2025-2026學(xué)年總務(wù)主任年度述職報告
- 機電井(水源井)工程施工技術(shù)方案
- 2025ACCP實踐指南:危重患者血漿與血小板輸注指南解讀
- 腳手架施工環(huán)境保護措施方案
- 符號互動理論課件
- 獸藥使用法律法規(guī)學(xué)習(xí)材料
- 農(nóng)村道路交通安全課件兒
- 2023年中級財務(wù)會計各章作業(yè)練習(xí)題
評論
0/150
提交評論