版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆呼倫貝爾市重點中學高一上數(shù)學期末經(jīng)典試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如果且,則等于A.2016 B.2017C.1009 D.20182.已知函數(shù)是冪函數(shù),且在上是減函數(shù),則實數(shù)m的值是()A或2 B.2C. D.13.下列函數(shù)中定義域為,且在上單調(diào)遞增的是A. B.C. D.4.設m,n是兩條不同的直線,α,β,γ是三個不同的平面,給出下列四個命題:①若m⊥α,n∥α,則m⊥n②若α⊥γ,β⊥γ,則α∥β③若α⊥β,m?α,則m⊥β④若α∥β,β∥γ,m⊥α,則m⊥γ其中正確命題的序號是()A.和 B.和C.和 D.和5.已知,,則A. B.C. D.6.若關于的一元二次不等式的解集為,則實數(shù)的取值范圍是()A.或 B.C.或 D.7.若函數(shù)取最小值時,則()A. B.C. D.8.函數(shù)的圖像可能是()A. B.C. D.9.比較,,的大?。ǎ〢. B.C. D.10.過圓C:(x﹣2)2+(y﹣2)2=4的圓心,作直線分別交x,y正半軸于點A,B,△AOB被圓分成四部分(如圖),若這四部分圖形面積滿足SI+SⅣ=SⅡ+SⅢ,則這樣的直線AB有A.0條 B.1條C.2條 D.3條二、填空題:本大題共6小題,每小題5分,共30分。11.如果滿足對任意實數(shù),都有成立,那么a的取值范圍是______12.已知角的終邊過點,則______13.已知函數(shù)是定義在上的奇函數(shù),當時,為常數(shù)),則=_________.14.已知,若,則__________.15.已知函數(shù),且函數(shù)恰有兩個不同零點,則實數(shù)的取值范圍是___________.16.已知直線與兩坐標軸所圍成的三角形的面積為1,則實數(shù)值是____________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(,,),其部分圖像如圖所示.(1)求函數(shù)的解析式;(2)若,且,求的值.18.如圖,已知直角梯形中,且,又分別為的中點,將△沿折疊,使得.(Ⅰ)求證:AE⊥平面CDE;(Ⅱ)求證:FG∥平面BCD;(Ⅲ)在線段AE上找一點R,使得平面BDR⊥平面DCB,并說明理由19.如圖,直三棱柱中,分別為的中點.(1)求證:平面;(2)已知,,,求三棱錐的體積.20.已知函數(shù).(1)求的值;你能發(fā)現(xiàn)與有什么關系?寫出你的發(fā)現(xiàn)并加以證明:(2)試判斷在區(qū)間上的單調(diào)性,并用單調(diào)性的定義證明.21.在①;②函數(shù)為偶函數(shù):③0是函數(shù)的零點這三個條件中選一個條件補充在下面問題中,并解答下面的問題問題:已知函數(shù),,且______(1)求函數(shù)的解析式;(2)判斷函數(shù)在區(qū)間上的單調(diào)性,并用定義證明注:如果選擇多個條件分別解答,按第一個解答計分
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】∵f(x)滿足對任意的實數(shù)a,b都有f(a+b)=f(a)?f(b),∴令b=1得,f(a+1)=f(a)?f(1),∴,所以,共1009項,所以.故選D.2、C【解析】由函數(shù)是冪函數(shù)可得,解得或2,再討論單調(diào)性即可得出.【詳解】是冪函數(shù),,解得或2,當時,在上是減函數(shù),符合題意,當時,在上是增函數(shù),不符合題意,.故選:C.3、D【解析】先求解選項中各函數(shù)的定義域,再判定各函數(shù)的單調(diào)性,可得選項.【詳解】因為的定義域為,的定義域為,所以排除選項B,C.因為在是減函數(shù),所以排除選項A,故選D.【點睛】本題主要考查函數(shù)的性質(zhì),求解函數(shù)定義域時,熟記常見的類型:分式,偶次根式,對數(shù)式等,單調(diào)性一般結合初等函數(shù)的單調(diào)性進行判定,側(cè)重考查數(shù)學抽象的核心素養(yǎng).4、B【解析】根據(jù)空間直線和平面平行、垂直的性質(zhì)分別進行判斷即可【詳解】①若m⊥α,n∥α,則m⊥n成立,故①正確,②若α⊥γ,β⊥γ,則α∥β不成立,兩個平面沒有關系,故②錯誤③若α⊥β,m?α,則m⊥β不成立,可能m與β相交,故③錯誤,④若α∥β,β∥γ,m⊥α,則m⊥γ,成立,故④正確,故正確是①④,故選B【點睛】本題主要考查命題的真假判斷,涉及空間直線和平面平行和垂直的判定和性質(zhì),考查學生的空間想象能力5、A【解析】∵∴∴∴故選A6、B【解析】由題意可得,解不等式即可求出結果.【詳解】關于的一元二次不等式的解集為,所以,解得,故選:B.7、B【解析】利用輔助角公式化簡整理,得到輔助角與的關系,利用三角函數(shù)的圖像和性質(zhì)分析函數(shù)的最值,計算正弦值即可.【詳解】,其中,因為當時取得最小值,所以,故.故選:B.8、D【解析】∵,∴,∴函數(shù)需向下平移個單位,不過(0,1)點,所以排除A,當時,∴,所以排除B,當時,∴,所以排除C,故選D.考點:函數(shù)圖象的平移.9、D【解析】由對數(shù)函數(shù)的單調(diào)性判斷出,再根據(jù)冪函數(shù)在上單調(diào)遞減判斷出,即可確定大小關系.【詳解】因為,,所以故選:D【點睛】本題考查利用對數(shù)函數(shù)及冪函數(shù)的單調(diào)性比較數(shù)的大小,屬于基礎題.10、B【解析】數(shù)形結合分析出為定值,因此為定值,從而確定直線AB只有一條.【詳解】已知圓與軸,軸均相切,由已知條件得,第部分的面積是定值,所以為定值,即為定值,當直線繞著圓心C移動時,只有一個位置符合題意,即直線AB只有一條.故選:B【點睛】本題考查直線與圓的實際應用,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)題中條件先確定函數(shù)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性求解參數(shù)的取值范圍.【詳解】由對任意實數(shù)都成立可知,函數(shù)為實數(shù)集上的單調(diào)減函數(shù).所以解得.故答案為.12、【解析】根據(jù)三角函數(shù)的定義求出r即可.【詳解】角的終邊過點,,則,故答案為【點睛】本題主要考查三角函數(shù)值的計算,根據(jù)三角函數(shù)的定義是解決本題的關鍵.三角函數(shù)的定義將角的終邊上的點的坐標和角的三角函數(shù)值聯(lián)系到一起,.知道終邊上的點的坐標即可求出角的三角函數(shù)值,反之也能求點的坐標.13、【解析】先由函數(shù)奇偶性,結合題意求出,計算出,即可得出結果.【詳解】因為為定義在上的奇函數(shù),當時,,則,解得,則,所以,因此.故答案為:.14、【解析】由已知先求得,再求得,代入可得所需求的函數(shù)值.【詳解】由已知得,即,所以,而,故答案為.【點睛】本題考查函數(shù)求值中的給值求值問題,關鍵在于由已知的函數(shù)值求得其數(shù)量關系,代入所需求的函數(shù)解析式中,可得其值,屬于基礎題.15、【解析】作出函數(shù)的圖象,把函數(shù)的零點轉(zhuǎn)化為直線與函數(shù)圖象交點問題解決.【詳解】由得,即函數(shù)零點是直線與函數(shù)圖象交點橫坐標,當時,是增函數(shù),函數(shù)值從1遞增到2(1不能取),當時,是增函數(shù),函數(shù)值為一切實數(shù),在坐標平面內(nèi)作出函數(shù)的圖象,如圖,觀察圖象知,當時,直線與函數(shù)圖象有2個交點,即函數(shù)有2個零點,所以實數(shù)的取值范圍是:.故答案為:16、1或-1【解析】令x=0,得y=k;令y=0,得x=?2k.∴三角形面積S=|xy|=k2.又S=1,即k2=1,值是1或-1.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】【試題分析】(1)根據(jù)圖像的最高點求得,根據(jù)函數(shù)圖像的零點和最小值位置可知函數(shù)的四分之一周期為,由此求得,代入函數(shù)上一個點,可求得的值.(2)利用同角三角函數(shù)關系和二倍角公式,求得的值,代入所求并計算得結果.【試題解析】(Ⅰ)由圖可知,圖像過點(Ⅱ),且18、(Ⅰ)(Ⅱ)(Ⅲ)見解析【解析】(Ⅰ)(Ⅱ)利用判定定理證明線面平行時,關鍵是在平面內(nèi)找一條與已知直線平行的直線,解題時可先直觀判斷平面內(nèi)是否已有,若沒有,則需作出該直線,常考慮三角形的中位線、平行四邊形的對邊或過平行線分線段成比例等.證明直線和平面垂直的常用方法:(1)利用判定定理.(2)利用判定定理的推論.(3)利用面面平行的性質(zhì).(4)利用面面垂直的性質(zhì).(Ⅲ)判定面面垂直的方法(1)面面垂直的定義,即證兩平面所成的二面角為直角;(2)面面垂直的判定定理試題解析:(1)由已知得DE⊥AE,AE⊥EC.∵DE∩EC=E,DE、EC?平面DCE.∴AE⊥平面CDE.(2)取AB中點H,連接GH、FH,∴GH∥BD,F(xiàn)H∥BC,又GH∩FH=H,∴平面FHG∥平面BCD,∴GF∥平面BCD.(3)取線段AE的中點R,則平面BDR⊥平面DCB取線段DC的中點M,取線段DB中點H,連接MH,RH,BR,DR在△DEC中,∵M為線段DC,H為線段DB中點,R為線段AE中點又,∴RH⊥DC10分∴RH⊥面DCB∵RH?平面DRB平面DRB⊥平面DCB即取AE中點R時,有平面DBR⊥平面DCB12分(其它正確答案請酌情給分)考點:立體幾何綜合應用19、(1)詳見解析(2)2【解析】(1)證線面平行則需在面中找一線與已知線平行即可,也可通過證明面面平行得到線面平行(2)∵,,,∴,∴.∵是直棱柱,∴棱柱的高為,∴棱柱的體積為.由體積關系可得試題解析:(1)設是的中點,分別在中使用三角形的中位線定理得.又是平面內(nèi)的相交直線,∴平面平面.又平面,∴平面.(2)∵,,,∴,∴.∵是直棱柱,∴棱柱的高為,∴棱柱的體積為.∴.20、(1),,與的關系:,證明見解析(2)在上單調(diào)遞減,證明見解析【解析】(1)通過函數(shù)解析式計算出,通過計算證明.(2)通過來證得在區(qū)間上單調(diào)遞減.【小問1詳解】,.證明:..【小問2詳解】在區(qū)間上遞減.證明如下:且.在上單調(diào)遞減.21、(1)(2)單調(diào)遞增,證明見解析【解析】(1)若選條件①,根據(jù)及指數(shù)對數(shù)恒等式求出的值,即可求出函數(shù)解析式;若選條件②,根據(jù),即可得到,從而求出的值,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美發(fā)男士活動方案策劃(3篇)
- 2026天津市河北區(qū)教育系統(tǒng)事業(yè)單位招聘95人考試參考題庫及答案解析
- 2026山東臨沂市羅莊區(qū)部分事業(yè)單位公開招聘綜合類崗位工作人員17人參考考試題庫及答案解析
- 2026廣東惠州市博羅縣醫(yī)療保障局招聘編外人員1人備考考試題庫及答案解析
- 2026廣西北海市事業(yè)單位統(tǒng)一招聘1059人考試備考試題及答案解析
- 6.1中國共產(chǎn)黨領導的多黨合作和政治協(xié)商制度 課件 統(tǒng)編版高中政治必修三 政治與法治
- 工業(yè)機器人離線編程 第2版-課件第4章 碼垛機器人的離線編程
- 頭發(fā)護理與色彩搭配:時尚造型
- 化學反應工程培訓課件
- 2026年疼痛評估與規(guī)范化管理護理實訓課程
- 財務出納述職報告
- 新疆烏魯木齊市2024-2025學年八年級(上)期末語文試卷(解析版)
- 2025年包頭鋼鐵職業(yè)技術學院單招職業(yè)技能考試題庫完整
- 蘋果電腦macOS效率手冊
- T-CHAS 20-3-7-1-2023 醫(yī)療機構藥事管理與藥學服務 第3-7-1 部分:藥學保障服務 重點藥品管理 高警示藥品
- 2022年版 義務教育《數(shù)學》課程標準
- 供貨保障方案及應急措施
- TOC基本課程講義學員版-王仕斌
- 初中語文新課程標準與解讀課件
- 中建通風與空調(diào)施工方案
- GB/T 3683-2023橡膠軟管及軟管組合件油基或水基流體適用的鋼絲編織增強液壓型規(guī)范
評論
0/150
提交評論