強(qiáng)化訓(xùn)練人教版九年級數(shù)學(xué)上冊第二十四章圓專項練習(xí)試卷(含答案詳解)_第1頁
強(qiáng)化訓(xùn)練人教版九年級數(shù)學(xué)上冊第二十四章圓專項練習(xí)試卷(含答案詳解)_第2頁
強(qiáng)化訓(xùn)練人教版九年級數(shù)學(xué)上冊第二十四章圓專項練習(xí)試卷(含答案詳解)_第3頁
強(qiáng)化訓(xùn)練人教版九年級數(shù)學(xué)上冊第二十四章圓專項練習(xí)試卷(含答案詳解)_第4頁
強(qiáng)化訓(xùn)練人教版九年級數(shù)學(xué)上冊第二十四章圓專項練習(xí)試卷(含答案詳解)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版九年級數(shù)學(xué)上冊第二十四章圓專項練習(xí)考試時間:90分鐘;命題人:數(shù)學(xué)教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,PA,PB是⊙O的切線,A,B是切點(diǎn),點(diǎn)C為⊙O上一點(diǎn),若∠ACB=70°,則∠P的度數(shù)為(

)A.70° B.50° C.20° D.40°2、下列多邊形中,內(nèi)角和最大的是(

)A. B. C. D.3、如圖,點(diǎn)O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°4、下列圖形為正多邊形的是()A. B. C. D.5、已知⊙O中最長的弦為8cm,則⊙O的半徑為()cm.A.2 B.4 C.8 D.166、一個商標(biāo)圖案如圖中陰影部分,在長方形中,,,以點(diǎn)為圓心,為半徑作圓與的延長線相交于點(diǎn),則商標(biāo)圖案的面積是(

)A. B.C. D.7、如圖是一圓錐的側(cè)面展開圖,其弧長為,則該圓錐的全面積為A.60π B.85π C.95π D.169π8、已知扇形的圓心角為,半徑為,則弧長為(

)A. B. C. D.9、如圖,、為⊙O的切線,切點(diǎn)分別為A、B,交于點(diǎn)C,的延長線交⊙O于點(diǎn)D.下列結(jié)論不一定成立的是(

)A.為等腰三角形 B.與相互垂直平分C.點(diǎn)A、B都在以為直徑的圓上 D.為的邊上的中線10、如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.21第Ⅱ卷(非選擇題70分)二、填空題(5小題,每小題4分,共計20分)1、如圖,已知的半徑為2,內(nèi)接于,,則__________.2、如圖,⊙O的直徑AB=26,弦CD⊥AB,垂足為E,OE:BE=5:8,則CD的長為______.3、如圖,AB是⊙O的直徑,點(diǎn)C,D,E都在⊙O上,∠1=55°,則∠2=_____°.4、如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,1)、B(0,﹣1),以點(diǎn)A為圓心,AB為半徑作圓,交x軸于點(diǎn)C、D,則CD的長是____.5、如圖,已知點(diǎn)C是⊙O的直徑AB上的一點(diǎn),過點(diǎn)C作弦DE,使CD=CO.若AD的度數(shù)為35°,則的度數(shù)是_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,∠BAC的平分線交△ABC的外接圓于點(diǎn)D,∠ABC的平分線交AD于點(diǎn)E.(1)求證:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑.2、如圖,沿一條母線將圓錐側(cè)面剪開并展平,得到一個扇形,若圓錐的底面圓的半徑,扇形的圓心角,求該圓錐的母線長.3、在中,,,D為的中點(diǎn),E,F(xiàn)分別為,上任意一點(diǎn),連接,將線段繞點(diǎn)E順時針旋轉(zhuǎn)90°得到線段,連接,.(1)如圖1,點(diǎn)E與點(diǎn)C重合,且的延長線過點(diǎn)B,若點(diǎn)P為的中點(diǎn),連接,求的長;(2)如圖2,的延長線交于點(diǎn)M,點(diǎn)N在上,且,求證:;(3)如圖3,F(xiàn)為線段上一動點(diǎn),E為的中點(diǎn),連接,H為直線上一動點(diǎn),連接,將沿翻折至所在平面內(nèi),得到,連接,直接寫出線段的長度的最小值.4、已知的半徑是.弦.求圓心到的距離;弦兩端在圓上滑動,且保持,的中點(diǎn)在運(yùn)動過程中構(gòu)成什么圖形,請說明理由.5、如圖,在中,,的中點(diǎn).(1)求證:三點(diǎn)在以為圓心的圓上;(2)若,求證:四點(diǎn)在以為圓心的圓上.-參考答案-一、單選題1、D【解析】【分析】首先連接OA,OB,由PA,PB為⊙O的切線,根據(jù)切線的性質(zhì),即可得∠OAP=∠OBP=90°,又由圓周角定理,可求得∠AOB的度數(shù),繼而可求得答案.【詳解】解:連接OA,OB,∵PA,PB為⊙O的切線,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故選:D.【考點(diǎn)】此題考查了切線的性質(zhì)與圓周角定理,注意掌握輔助線的作法和數(shù)形結(jié)合思想的應(yīng)用.2、D【解析】【分析】根據(jù)多邊形內(nèi)角和公式可直接進(jìn)行排除選項.【詳解】解:A、是一個三角形,其內(nèi)角和為180°;B、是一個四邊形,其內(nèi)角和為360°;C、是一個五邊形,其內(nèi)角和為540°;D、是一個六邊形,其內(nèi)角和為720°;∴內(nèi)角和最大的是六邊形;故選D.【考點(diǎn)】本題主要考查多邊形內(nèi)角和,熟練掌握多邊形內(nèi)角和公式是解題的關(guān)鍵.3、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點(diǎn)】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點(diǎn)的連線平分這個內(nèi)角.4、D【解析】【分析】根據(jù)正多邊形的定義:各個角都相等,各條邊都相等的多邊形叫做正多邊形可得答案.【詳解】根據(jù)正多邊形的定義,得到D中圖形是正五邊形.故選D.【考點(diǎn)】本題考查了正多邊形,關(guān)鍵是掌握正多邊形的定義.5、B【解析】【分析】⊙O最長的弦就是直徑從而不難求得半徑的長.【詳解】解:∵⊙O中最長的弦為8cm,即直徑為8cm,∴⊙O的半徑為4cm.故選:B.【考點(diǎn)】本題考查弦,直徑等知識,記住圓中的最長的弦就是直徑是解題的關(guān)鍵.6、D【解析】【分析】根據(jù)題意作輔助線DE、EF使BCEF為一矩形,從圖中可以看出陰影部分的面積=三角形的面積-(正方形的面積-扇形的面積),依據(jù)面積公式進(jìn)行計算即可得出答案.【詳解】解:作輔助線DE、EF使BCEF為一矩形.則S△CEF=(8+4)×4÷2=24cm2,S正方形ADEF=4×4=16cm2,S扇形ADF==4πcm2,∴陰影部分的面積=24-(16-4π)=.故選:D.【考點(diǎn)】本題主要考查扇形的面積計算,解題的關(guān)鍵是作出輔助線并從圖中看出陰影部分的面積是由哪幾部分組成的.7、B【解析】【分析】設(shè)圓錐的底面圓的半徑為r,扇形的半徑為R,先根據(jù)弧長公式得到=10π,解得R=12,再利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2π?r=10π,解得r=5,然后計算底面積與側(cè)面積的和.【詳解】設(shè)圓錐的底面圓的半徑為r,扇形的半徑為R,根據(jù)題意得=10π,解得R=12,2π?r=10π,解得r=5,所以該圓錐的全面積=π?52+?10π?12=85π.故選B.【考點(diǎn)】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.8、D【解析】【分析】根據(jù)扇形的弧長公式計算即可.【詳解】∵扇形的圓心角為30°,半徑為2cm,∴弧長cm故答案為:D.【考點(diǎn)】本題主要考查扇形的弧長,熟記扇形的弧長公式是解題的關(guān)鍵.9、B【解析】【分析】連接OB,OC,令M為OP中點(diǎn),連接MA,MB,證明Rt△OPB≌Rt△OPA,可得BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,可推出為等腰三角形,可判斷A;根據(jù)△OBP與△OAP為直角三角形,OP為斜邊,可得PM=OM=BM=AM,可判斷C;證明△OBC≌△OAC,可得PC⊥AB,根據(jù)△BPA為等腰三角形,可判斷D;無法證明與相互垂直平分,即可得出答案.【詳解】解:連接OB,OC,令M為OP中點(diǎn),連接MA,MB,∵B,C為切點(diǎn),∴∠OBP=∠OAP=90°,∵OA=OB,OP=OP,∴Rt△OPB≌Rt△OPA,∴BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,∴為等腰三角形,故A正確;∵△OBP與△OAP為直角三角形,OP為斜邊,∴PM=OM=BM=AM∴點(diǎn)A、B都在以為直徑的圓上,故C正確;∵∠BOC=∠AOC,OB=OA,OC=OC,∴△OBC≌△OAC,∴∠OCB=∠OCA=90°,∴PC⊥AB,∵△BPA為等腰三角形,∴為的邊上的中線,故D正確;無法證明與相互垂直平分,故選:B.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),圓的性質(zhì),掌握知識點(diǎn)靈活運(yùn)用是解題關(guān)鍵.10、A【解析】【分析】根據(jù)已知作出三角形的高線AD,進(jìn)而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點(diǎn)A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,∵sinC===,∴AD=3,∴CD==4,∴BD=3,則△ABC的面積是:×AD×BC=×3×(3+4)=.故選A.【考點(diǎn)】此題主要考查了解直角三角形的知識,作出AD⊥BC,進(jìn)而得出相關(guān)線段的長度是解決問題的關(guān)鍵.二、填空題1、【解析】【詳解】分析:根據(jù)圓內(nèi)接四邊形對邊互補(bǔ)和同弧所對的圓心角是圓周角的二倍,可以求得∠AOB的度數(shù),然后根據(jù)勾股定理即可求得AB的長.詳解:連接AD、AE、OA、OB,∵⊙O的半徑為2,△ABC內(nèi)接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案為2.點(diǎn)睛:本題考查三角形的外接圓和外心,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.2、24【解析】【分析】連接OC,由題意得OE=5,BE=8,再由垂徑定理得CE=DE,∠OEC=90°,然后由勾股定理求出CE=12,即可求解.【詳解】解:連接OC,如圖所示:∵直徑AB=26,∴OC=OB=13,∵OE:BE=5:8,∴OE=5,BE=8,∵弦CD⊥AB,∴CE=DE,∠OEC=90°,∴CE==12,∴CD=2CE=24,故答案為:24.【考點(diǎn)】本題考查的是垂徑定理、勾股定理等知識,熟練掌握垂徑定理,由勾股定理求出CE的長是解題的關(guān)鍵.3、35【解析】【分析】如圖(見解析),連接AD,先根據(jù)圓周角定理可得,從而可得,再根據(jù)圓周角定理可得,由此即可得.【詳解】如圖,連接AD∵AB是⊙O的直徑∴,即又由圓周角定理得:∵∴故答案為:35.【考點(diǎn)】本題考查了圓周角定理,熟記圓周角定理是解題關(guān)鍵.4、【解析】【分析】根據(jù)題意在中求出,利用垂徑定理得出結(jié)果.【詳解】由題意,在中,,,由垂徑定理知,,故答案為:.【考點(diǎn)】本題考查了勾股定理及垂徑定理,熟練掌握垂徑定理是解決本題的關(guān)鍵.5、105°.【解析】【分析】連接OD、OE,根據(jù)圓心角、弧、弦的關(guān)系定理求出∠AOD=35°,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理計算即可.【詳解】解:連接OD、OE,∵的度數(shù)為35°,∴∠AOD=35°,∵CD=CO,∴∠ODC=∠AOD=35°,∵OD=OE,∴∠ODC=∠E=35°,∴∠DOE=180°-∠ODC-∠E=180°-35°-35°=110°,∴∠AOE=∠DOE-∠AOD=110°-35°=75°,∴∠BOE=180°-∠AOE=180°-75°=105°,∴的度數(shù)是105°.故答案為105°.【考點(diǎn)】本題考查了圓心角、弧、弦的關(guān)系定理:在同圓和等圓中,相等的圓心角所對的弧相等,所對的弦也相等.三、解答題1、(1)證明見解析(2)2【解析】【詳解】試題分析:由角平分線得出,得出,由圓周角定理得出證出再由三角形的外角性質(zhì)得出即可得出由得:,得出由圓周角定理得出是直徑,由勾股定理求出即可得出外接圓的半徑.試題解析:(1)證明:平分又平分連接,是直徑.平分∴半徑為2、【解析】【分析】根據(jù)側(cè)面展開圖的弧長等于底面周長列方程即可.【詳解】解:圓錐的底面周長,由題意可得,解得,所以該圓錐的母線長為.【考點(diǎn)】本題考查了圓錐的有關(guān)計算,解題關(guān)鍵是熟知圓錐的側(cè)面展開圖的弧長等于圓錐底面周長和圓錐母線等于圓錐側(cè)面展開圖半徑,根據(jù)題意建立方程.3、(1)2(2)見解析(3)【解析】【分析】(1)根據(jù)已知條件可得為的中點(diǎn),證明,進(jìn)而根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解;(2)過點(diǎn)作交的延長線于點(diǎn),證明,,可得,進(jìn)而根據(jù),即可得出結(jié)論,(3)根據(jù)(2)可知,當(dāng)點(diǎn)在線段上運(yùn)動時,點(diǎn)在平行于的線段上運(yùn)動,根據(jù)題意作出圖形,根據(jù)點(diǎn)到圓上的距離求最值即可求解.(1)如圖,連接將線段繞點(diǎn)E順時針旋轉(zhuǎn)90°得到線段,是等腰直角三角形,P為FG的中點(diǎn),,,,,D為的中點(diǎn),,,,,在中,;(2)如圖,過點(diǎn)作交的延長線于點(diǎn),,,,,是等腰直角三角形,,,在與中,

,,,,又,,

,,,,,

又,,,,,,,;(3)由(2)可知,則當(dāng)點(diǎn)在線段上運(yùn)動時,點(diǎn)在平行于的線段上運(yùn)動,將沿翻折至所在平面內(nèi),得到,E為的中點(diǎn),,,則點(diǎn)在以為圓心為半徑的圓上運(yùn)動,當(dāng)三點(diǎn)共線時,最小,如圖,當(dāng)運(yùn)動到與點(diǎn)重合時,取得最小值,.如圖,當(dāng)點(diǎn)運(yùn)動到與點(diǎn)重合時,取得最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論