版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
內(nèi)蒙古土默特左旗第一中學(xué)2026屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知圓,直線,則直線l被圓C所截得的弦長(zhǎng)的最小值為()A.2 B.3C.4 D.52.函數(shù)在上是單調(diào)遞增函數(shù),則的最大值等于()A.2 B.3C.5 D.63.在四面體中,空間的一點(diǎn)滿足,若共面,則()A. B.C. D.4.等差數(shù)列的公差為2,若成等比數(shù)列,則()A.72 B.90C.36 D.455.如圖,已知二面角平面角的大小為,其棱上有、兩點(diǎn),、分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都與垂直.已知,,則()A. B.C. D.6.已知三棱錐的各頂點(diǎn)都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.7.已知集合,,則中元素的個(gè)數(shù)為()A.3 B.2C.1 D.08.圓x2+y2-4=0與圓x2+y2-4x+4y-12=0公共弦所在直線方程為()A. B.C. D.9.在長(zhǎng)方體中,,,則與平面所成的角的正弦值為()A. B.C. D.10.曲線在點(diǎn)處的切線方程是()A. B.C. D.11.已知p、q是兩個(gè)命題,若“(¬p)∨q”是假命題,則()A.p、q都是假命題 B.p、q都是真命題C.p是假命題q是真命題 D.p是真命題q是假命題12.若直線與互相平行,且過(guò)點(diǎn),則直線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《算法九章·商功》中,后人稱之為“三角垛”.已知某“三角垛”的最上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球……設(shè)各層(從上往下)球數(shù)構(gòu)成一個(gè)數(shù)列,則___________,___________.14.曲線在處的切線方程為______15.曲線在點(diǎn)處的切線方程為_________16.已知拋物線的焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),M的準(zhǔn)線為l且與x軸相交于點(diǎn)B,A為M上的一點(diǎn),直線AO與直線l相交于C點(diǎn),若,,則M的標(biāo)準(zhǔn)方程為______________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列的前項(xiàng)和為,已知,且(1)證明:;(2)求18.(12分)已知橢圓的離心率為,左、右焦點(diǎn)分別為,,過(guò)的直線交橢圓E于A,B兩點(diǎn).當(dāng)軸時(shí),(1)求橢圓E的方程;(2)求的范圍19.(12分)如圖,在四棱柱中,側(cè)棱底面,,,,,,,()(1)求證:平面;(2)若直線與平面所成角的正弦值為,求的值;(3)現(xiàn)將與四棱柱形狀和大小完全相同的兩個(gè)四棱柱拼成一個(gè)新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問(wèn)共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫出的解析式.(直接寫出答案,不必說(shuō)明理由)20.(12分)已知圓內(nèi)有一點(diǎn),過(guò)點(diǎn)作直線交圓于、兩點(diǎn)(1)當(dāng)經(jīng)過(guò)圓心時(shí),求直線的方程;(2)當(dāng)弦的長(zhǎng)為時(shí),求直線的方程21.(12分)已知是公差不為零等差數(shù)列,,且、、成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式:(2)設(shè).?dāng)?shù)列{}的前項(xiàng)和為,求證:22.(10分)在平面直角坐標(biāo)系中,有一條長(zhǎng)度為3的線段,端點(diǎn),分別在軸、軸上運(yùn)動(dòng),為線段上一點(diǎn),且.(1)求點(diǎn)的軌跡的方程;(2)已知不過(guò)原點(diǎn)的直線與相交于,兩點(diǎn),且線段始終被直線平分.求的面積取最大時(shí)直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】直線l過(guò)定點(diǎn)D(1,1),當(dāng)時(shí),弦長(zhǎng)最短.【詳解】由,圓心,半徑,,由,故直線l過(guò)定點(diǎn),∵,故D在圓C內(nèi)部,直線l始終與圓相交,當(dāng)時(shí),直線l被圓截得的弦長(zhǎng)最短,,弦長(zhǎng)=.故選:C.2、B【解析】由f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù),得到在[1,+∞)上,恒成立,從而解得a≤3,故a的最大值為3【詳解】解:∵f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù)∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)時(shí),3x2≥3恒成立,∴a≤3,∴a的最大值是3故選:B3、D【解析】根據(jù)四點(diǎn)共面的向量表示,可得結(jié)果.【詳解】由共面知,故選:【點(diǎn)睛】本題主要考查空間中四點(diǎn)共面的向量表示,屬基礎(chǔ)題.4、B【解析】由題意結(jié)合成等比數(shù)列,有即可得,進(jìn)而得到、,即可求.【詳解】由題意知:,,又成等比數(shù)列,∴,解之得,∴,則,∴,故選:B【點(diǎn)睛】思路點(diǎn)睛:由其中三項(xiàng)成等比數(shù)列,利用等比中項(xiàng)性質(zhì)求項(xiàng),進(jìn)而得到等差數(shù)列的基本量1、由成等比,即;2、等差數(shù)列前n項(xiàng)和公式的應(yīng)用.5、C【解析】以、為鄰邊作平行四邊形,連接,計(jì)算出、的長(zhǎng),證明出,利用勾股定理可求得的長(zhǎng).【詳解】如下圖所示,以、為鄰邊作平行四邊形,連接,因?yàn)?,,則,又因?yàn)?,,,故二面角的平面角為,因?yàn)樗倪呅螢槠叫兴倪呅?,則,,因?yàn)?,故為等邊三角形,則,,則,,,故平面,因?yàn)槠矫?,則,故.故選:C.6、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點(diǎn)睛】與球有關(guān)的組合體問(wèn)題,一種是內(nèi)切,一種是外接.解題時(shí)要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點(diǎn)為正方體各個(gè)面的中心,正方體的棱長(zhǎng)等于球的直徑;球外接于正方體,正方體的頂點(diǎn)均在球面上,正方體的體對(duì)角線長(zhǎng)等于球的直徑.7、B【解析】集合中的元素為點(diǎn)集,由題意,可知集合A表示以為圓心,為半徑的單位圓上所有點(diǎn)組成的集合,集合B表示直線上所有的點(diǎn)組成的集合,又圓與直線相交于兩點(diǎn),,則中有2個(gè)元素.故選B.【名師點(diǎn)睛】求集合的基本運(yùn)算時(shí),要認(rèn)清集合元素的屬性(是點(diǎn)集、數(shù)集或其他情形)和化簡(jiǎn)集合,這是正確求解集合運(yùn)算的兩個(gè)先決條件.集合中元素的三個(gè)特性中的互異性對(duì)解題影響較大,特別是含有字母的集合,在求出字母的值后,要注意檢驗(yàn)集合中的元素是否滿足互異性.8、B【解析】?jī)蓤A的方程消掉二次項(xiàng)后的二元一次方程即為公共弦所在直線方程.【詳解】由x2+y2-4=0與x2+y2-4x+4y-12=0兩式相減得:,即.故選:B9、D【解析】過(guò)點(diǎn)作的垂線,垂足為,由線面垂直判定可知平面,則所求角即為,由長(zhǎng)度關(guān)系求得即可.【詳解】在平面內(nèi)過(guò)點(diǎn)作的垂線,垂足為,連接.,,,平面,平面,的正弦值即為所求角的正弦值,,,.故選:D.10、B【解析】求導(dǎo),得到曲線在點(diǎn)處的斜率,寫出切線方程.【詳解】因?yàn)?,所以曲線在點(diǎn)處斜率為4,所以曲線在點(diǎn)處的切線方程是,即,故選:B11、D【解析】由已知可得¬p,q都是假命題,從而可分析判斷各選項(xiàng)【詳解】∵“(¬p)∨q”是假命題,∴¬p,q都是假命題,∴p真,q假,故選:D.12、D【解析】由題意設(shè)直線的方程為,然后將點(diǎn)代入直線中,可求出的值,從而可得直線的方程【詳解】因?yàn)橹本€與互相平行,所以設(shè)直線的方程為,因?yàn)橹本€過(guò)點(diǎn),所以,得,所以直線的方程為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據(jù),,得到,利用累加法和等差數(shù)列求和公式求出,再利用裂項(xiàng)抵消法進(jìn)行求和.【詳解】因?yàn)?,,,,,以上個(gè)式子累加,得,則;因?yàn)?,所?故答案為:,.14、【解析】求得的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),由斜截式方程可得切線方程【詳解】解:的導(dǎo)數(shù)為,可得曲線在處的切線斜率為,切點(diǎn)為,即有切線方程為故答案為【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程,考查導(dǎo)數(shù)的幾何意義,直線方程的運(yùn)用,考查方程思想,屬于基礎(chǔ)題15、【解析】求導(dǎo),求出切線斜率,用點(diǎn)斜式寫出直線方程,化簡(jiǎn)即可.【詳解】,曲線在點(diǎn)處的切線方程為,即故答案為:16、【解析】先利用相似關(guān)系計(jì)算,求得直線OA的方程,再聯(lián)立方程求得,利用拋物線定義根據(jù)即得p值,即得結(jié)果.【詳解】因?yàn)?,,所以,則,如圖,,故,解得,所以,直線OA的斜率為,OA的方程,聯(lián)立直線OA與拋物線方程,解得,所以,故,則拋物線標(biāo)準(zhǔn)方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)【解析】(1)當(dāng)時(shí),由題可得,,兩式子相減可得,即,然后驗(yàn)證當(dāng)n=1時(shí),命題成立即可;(2)通過(guò)求解數(shù)列的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)的和即可得到其對(duì)應(yīng)前n項(xiàng)和的通項(xiàng)公式.【詳解】(1)由條件,對(duì)任意,有,因而對(duì)任意,有,兩式相減,得,即,又,所以,故對(duì)一切,(2)由(1)知,,所以,于是數(shù)列是首項(xiàng),公比為3的等比數(shù)列,數(shù)列是首項(xiàng),公比為3的等比數(shù)列,所以,于是從而,綜上所述,.【點(diǎn)睛】已知數(shù)列{an}的前n項(xiàng)和Sn,求數(shù)列的通項(xiàng)公式,其求解過(guò)程分為三步:(1)先利用a1=S1求出a1;(2)用n-1替換Sn中的n得到一個(gè)新的關(guān)系,利用an=Sn-Sn-1(n≥2)便可求出當(dāng)n≥2時(shí)an的表達(dá)式;(3)對(duì)n=1時(shí)的結(jié)果進(jìn)行檢驗(yàn),看是否符合n≥2時(shí)an的表達(dá)式,如果符合,則可以把數(shù)列的通項(xiàng)公式合寫;如果不符合,則應(yīng)該分n=1與n≥2兩段來(lái)寫.?dāng)?shù)列求和的常用方法有倒序相加法,錯(cuò)位相減法,裂項(xiàng)相消法,分組求和法,并項(xiàng)求和法等,可根據(jù)通項(xiàng)特點(diǎn)進(jìn)行選用.18、(1)(2)【解析】(1)根據(jù)離心率及通徑長(zhǎng)求出橢圓方程;(2)分直線AB斜率存在和斜率不存在兩種情況得到的范圍,進(jìn)而得到答案.【小問(wèn)1詳解】當(dāng)軸時(shí),取代入橢圓方程得:,得,所以,又,解得,,所以橢圓方程為【小問(wèn)2詳解】由,記,當(dāng)軸時(shí),由(1)知:,所以,當(dāng)AB斜率為k時(shí),直線AB為,,消去y得,所以,,所以,綜上,的范圍是.19、(1)證明見(jiàn)解析(2)(3)【解析】(1)取得中點(diǎn),連接,可證明四邊形是平行四邊形,再利用勾股定理的逆定理可得,即,又側(cè)棱底面,可得,利用線面垂直的判定定理即可證明;(2)通過(guò)建立空間直角坐標(biāo)系,由線面角的向量公式即可得出;(3)由題意可與左右平面,,上或下面,拼接得到方案,新四棱柱共有此4種不同方案.寫出每一方案下的表面積,通過(guò)比較即可得出【詳解】(1)證明:取的中點(diǎn),連接,,,四邊形是平行四邊形,,且,,,,又,側(cè)棱底面,,,平面(2)以為坐標(biāo)原點(diǎn),、、的方向?yàn)檩S的正方向建立空間直角坐標(biāo)系,則,,,,,設(shè)平面的一個(gè)法向量為,則,取,則,設(shè)與平面所成角為,則,解得,故所求(3)由題意可與左右平面,,上或下面,拼接得到方案新四棱柱共有此4種不同方案寫出每一方案下的表面積,通過(guò)比較即可得出【點(diǎn)睛】本題主要考查線面垂直的判定定理的應(yīng)用,利用向量求線面角、柱體的定義應(yīng)用和表面積的求法,意在考查學(xué)生的直觀想象能力,邏輯推理能力,數(shù)學(xué)運(yùn)算能力及化歸與轉(zhuǎn)化能力,屬于中檔題20、(1);(2)或【解析】(1)求得圓心坐標(biāo),由點(diǎn)斜式求得直線點(diǎn)的方程.(2)分成直線斜率存在和不存在兩種情況進(jìn)行分類討論,由此求得直線的方程.【詳解】(1)圓心坐標(biāo)為(1,0),,,整理得(2)圓的半徑為3,當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,整理得,圓心到直線的距離為,解得,代入整理得當(dāng)直線的斜率不存在時(shí),直線的方程為,經(jīng)檢驗(yàn)符合題意∴直線的方程為或21、(1);(2)證明見(jiàn)解析.【解析】(1)設(shè)等差數(shù)列的公差為,則,根據(jù)題意可得出關(guān)于的方程,求出的值,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)相消法求出,即可證得結(jié)論成立.【小問(wèn)1詳解】解:設(shè)等差數(shù)列的公差為,則,由題意可得,即,整理可得,,解得,因此,.【小問(wèn)2詳解】證明:,因此,,故原不等式得證.22、(1)(2)【解析】(1)設(shè),根據(jù)題意可得,,利用兩點(diǎn)之間的距離公式表示出,化簡(jiǎn)即可得出結(jié)果;(2)設(shè),,線段的中點(diǎn)為,利用兩
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司借款財(cái)務(wù)制度
- 名醫(yī)工作室財(cái)務(wù)制度
- 裝修公司項(xiàng)目部財(cái)務(wù)制度
- 宗教場(chǎng)所財(cái)務(wù)制度管理
- 養(yǎng)老院老人緊急救援預(yù)案制度
- 養(yǎng)老院老人健康飲食營(yíng)養(yǎng)師晉升制度
- 養(yǎng)老院老人安全管理制度
- 校園文化建設(shè)管理制度
- 敬老院財(cái)務(wù)管理制度
- 罕見(jiàn)血液病患者的疼痛管理策略-1
- 用電安全隱患檢測(cè)的新技術(shù)及應(yīng)用
- 2025年常州機(jī)電職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文2018-2024歷年參考題庫(kù)頻考點(diǎn)含答案解析
- 民間融資居間合同
- 環(huán)境污染損害評(píng)估報(bào)告
- 表面活性劑化學(xué)知識(shí)點(diǎn)
- 《塑料材質(zhì)食品相關(guān)產(chǎn)品質(zhì)量安全風(fēng)險(xiǎn)管控清單》
- 武術(shù)學(xué)校體育器材項(xiàng)目 投標(biāo)方案(技術(shù)方案)
- DL∕T 1057-2023 自動(dòng)跟蹤補(bǔ)償消弧線圈成套裝置技術(shù)條件
- 市場(chǎng)營(yíng)銷部門主管聘用協(xié)議
- 期貨投資說(shuō)課市公開課一等獎(jiǎng)省賽課微課金獎(jiǎng)?wù)n件
- 辦理退休委托書
評(píng)論
0/150
提交評(píng)論