版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省佳木斯市建三江一中2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若雙曲線的一條漸近線方程為.則()A. B.C.2 D.42.已知長(zhǎng)方體的底面ABCD是邊長(zhǎng)為4的正方形,長(zhǎng)方體的高為,則與對(duì)角面夾角的正弦值等于()A. B.C. D.3.觀察數(shù)列,(),,()的特點(diǎn),則括號(hào)中應(yīng)填入的適當(dāng)?shù)臄?shù)為()A. B.C. D.4.若隨機(jī)事件滿足,,,則事件與的關(guān)系是()A.互斥 B.相互獨(dú)立C.互為對(duì)立 D.互斥且獨(dú)立5.閱讀如圖所示程序框圖,運(yùn)行相應(yīng)的程序,輸出的S的值等于()A.2 B.6C.14 D.306.“”是“圓與軸相切”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件7.若點(diǎn)在橢圓上,則該橢圓的離心率為()A. B.C. D.8.若,則圖像上的點(diǎn)的切線的傾斜角滿足()A.一定為銳角 B.一定為鈍角C.可能為 D.可能為直角9.與空間向量共線的一個(gè)向量的坐標(biāo)是()A. B.C. D.10.在直三棱柱中,側(cè)面是邊長(zhǎng)為的正方形,,,且,則異面直線與所成的角為()A. B.C. D.11.已知A為拋物線C:y2=2px(p>0)上一點(diǎn),點(diǎn)A到C的焦點(diǎn)的距離為12,到y(tǒng)軸的距離為9,則p=()A.2 B.3C.6 D.912.拋物線焦點(diǎn)坐標(biāo)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.與直線平行,且距離為的直線方程為______14.函數(shù)的導(dǎo)數(shù)_________________.15.若點(diǎn)到點(diǎn)的距離比它到定直線的距離小1,則點(diǎn)滿足的方程為_____________16.希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值λ(λ≠1)的點(diǎn)的軌跡是圓”.后來(lái),人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓.已知在平面直角坐標(biāo)系xOy中,A(-2,1),B(-2,4),點(diǎn)P是滿足的阿氏圓上的任一點(diǎn),則該阿氏圓的方程為___________________;若點(diǎn)Q為拋物線E:y2=4x上的動(dòng)點(diǎn),Q在直線x=-1上的射影為H,則的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且短軸長(zhǎng)為2.(1)求橢圓C的方程;(2)設(shè)橢圓C的上頂點(diǎn)為B,右焦點(diǎn)為F,直線l與橢圓交于M,N兩點(diǎn),問是否存在直線l,使得F為的垂心,若存在,求出直線l的方程;若不存在,說明理由.18.(12分)已知命題:對(duì)任意實(shí)數(shù)都有恒成立;命題:關(guān)于的方程有實(shí)數(shù)根(1)若命題為假命題,求實(shí)數(shù)的取值范圍;(2)如果“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍19.(12分)已知函數(shù)(…是自然對(duì)數(shù)的底數(shù)).(1)求的單調(diào)區(qū)間;(2)求函數(shù)的零點(diǎn)的個(gè)數(shù).20.(12分)已知點(diǎn)P到點(diǎn)的距離比它到直線的距離小1.(1)求點(diǎn)P的軌跡方程;(2)點(diǎn)M,N在點(diǎn)P的軌跡上且位于x軸的兩側(cè),(其中O為坐標(biāo)原點(diǎn)),求面積的最小值.21.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題的題設(shè)條件中.問題:等差數(shù)列的公差為,滿足,________?(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和得到最小值時(shí)的值.22.(10分)已知等差數(shù)列的前n項(xiàng)和為Sn,S9=81,,求:(1)Sn;(2)若S3、、Sk成等比數(shù)列,求k
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】求出漸近線方程為,列出方程求出.【詳解】雙曲線的漸近線方程為,因?yàn)椋?,所?故選:C2、C【解析】建立空間直角坐標(biāo)系,結(jié)合空間向量的夾角坐標(biāo)公式即可求出線面角的正弦值.【詳解】連接,建立如圖所示的空間直角坐標(biāo)系∵底面是邊長(zhǎng)為4的正方形,,∴,,,因?yàn)?,且,所以平面,∴,平面的法向量,∴與對(duì)角面所成角的正弦值為故選:C.3、D【解析】利用觀察法可得,即得.【詳解】由題可得數(shù)列的通項(xiàng)公式為,∴.故選:D4、B【解析】利用獨(dú)立事件,互斥事件和對(duì)立事件的定義判斷即可【詳解】解:因?yàn)?,,又因?yàn)椋杂?,所以事件與相互獨(dú)立,不互斥也不對(duì)立故選:B.5、C【解析】模擬運(yùn)行程序,直到得出輸出的S的值.【詳解】運(yùn)行程序框圖,,,;,,;,,;,輸出.故選:C6、A【解析】根據(jù)充分不必要條件的定義和圓心到軸的距離求出可得答案.【詳解】時(shí),圓的圓心坐標(biāo)為,半徑為2,此時(shí)圓與軸相切;當(dāng)圓與軸相切時(shí),因?yàn)閳A的半徑為2,所以圓心到軸的距離為,所以,“”是“圓與軸相切”的充分不必要條件故選:A7、C【解析】根據(jù)給定條件求出即可計(jì)算橢圓的離心率.【詳解】因點(diǎn)在橢圓,則,解得,而橢圓長(zhǎng)半軸長(zhǎng),所以橢圓離心率.故選:C8、C【解析】求出導(dǎo)函數(shù),判斷導(dǎo)數(shù)的正負(fù),從而得出結(jié)論【詳解】,時(shí),,遞減,時(shí),,遞增,而,所以切線斜率可能為正數(shù),也可能為負(fù)數(shù),還可以為0,則傾斜角可為銳角,也可為鈍角,還可以為,當(dāng)時(shí),斜率不存在,而存在,則不成立.故選:C9、C【解析】根據(jù)空間向量共線的坐標(biāo)表示即可得出結(jié)果.【詳解】.故選:C.10、C【解析】分析得出,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得異面直線與所成的角.【詳解】由題意可知,,因?yàn)?,,則,,因?yàn)槠矫?,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則點(diǎn)、、、,,,,因此,異面直線與所成的角為.故選:C.11、C【解析】利用拋物線的定義建立方程即可得到答案.【詳解】設(shè)拋物線的焦點(diǎn)為F,由拋物線的定義知,即,解得.故選:C.【點(diǎn)晴】本題主要考查利用拋物線的定義計(jì)算焦半徑,考查學(xué)生轉(zhuǎn)化與化歸思想,是一道容易題.12、C【解析】由拋物線方程確定焦點(diǎn)位置,確定焦參數(shù),得焦點(diǎn)坐標(biāo)【詳解】拋物線的焦點(diǎn)在軸正半軸,,,,因此焦點(diǎn)坐標(biāo)為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】由題意,設(shè)所求直線方程為,根據(jù)兩平行直線間的距離公式即可求解.【詳解】解:由題意,設(shè)所求直線方程為,因?yàn)橹本€與直線的距離為,所以,解得或,所以所求直線方程為或,故答案為:或.14、.【解析】根據(jù)初等函數(shù)的導(dǎo)數(shù)法則和導(dǎo)數(shù)的四則運(yùn)算法則,準(zhǔn)確運(yùn)算,即可求解.【詳解】由題意,函數(shù),可得.故答案為:.15、【解析】根據(jù)拋物線的定義可得動(dòng)點(diǎn)的軌跡方程【詳解】點(diǎn)到點(diǎn)的距離比它到直線的距離少1,所以點(diǎn)到點(diǎn)的距離與到直線的距離相等,所以其軌跡為拋物線,焦點(diǎn)為,準(zhǔn)線為,所以方程為,故答案為:16、①.②.【解析】(1)利用直譯法直接求出P點(diǎn)的軌跡(2)先利用阿氏圓的定義將轉(zhuǎn)化為P點(diǎn)到另一個(gè)定點(diǎn)的距離,然后結(jié)合拋物線的定義容易求得的最小值【詳解】設(shè)P(x,y),由阿氏圓的定義可得即化簡(jiǎn)得則設(shè)則由拋物線的定義可得當(dāng)且僅當(dāng)四點(diǎn)共線時(shí)取等號(hào),的最小值為故答案為:【點(diǎn)睛】本題考查了拋物線的定義及幾何性質(zhì),同時(shí)考查了阿氏圓定義的應(yīng)用.還考查了學(xué)生利用轉(zhuǎn)化思想、方程思想等思想方法解題的能力.難度較大三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】(1)根據(jù)離心率及短軸長(zhǎng),利用橢圓中的關(guān)系可以求出橢圓方程;(2)設(shè)直線的方程,與橢圓方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關(guān)系,結(jié)合已知和斜率公式,可以求出直線的方程.【小問1詳解】,,,,橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由已知可得,,,∴,∵,設(shè)直線的方程為:,代入橢圓方程整理得,設(shè),,則,,∵,∴.即,因?yàn)?,,?.所以,或.又時(shí),直線過點(diǎn),不合要求,所以.故存在直線:滿足題設(shè)條件.18、(1);(2)【解析】(1)先分別求出命題為真命題和命題為真命題時(shí)參數(shù)的范圍,則可得當(dāng)命題為假命題,實(shí)數(shù)的取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假,再分真,且假,和真,且假兩種情況分別求出參數(shù)的范圍,再綜合得到答案.【詳解】命題為真命題:對(duì)任意實(shí)數(shù)都有恒成立或;命題為真命題:關(guān)于的方程有實(shí)數(shù)根;(1)命題為假命題,則實(shí)數(shù)取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假.如果真,且假,有,且,則如果真,且假,有或,且,則綜上,實(shí)數(shù)的取值范圍為19、(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)時(shí)函數(shù)沒有零點(diǎn);或時(shí)函數(shù)有且只有一個(gè)零點(diǎn);時(shí),函數(shù)有兩個(gè)零點(diǎn).【解析】(1)先對(duì)函數(shù)求導(dǎo),然后分和兩種情況判斷導(dǎo)函數(shù)正負(fù),求其單調(diào)區(qū)間;(2)由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點(diǎn)情況,從而可得答案【詳解】(1)因?yàn)?,所以,?dāng)時(shí),恒成立,所以的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間;當(dāng)時(shí),令,得;令,得,所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)顯然0不是函數(shù)的零點(diǎn),由,得.令,則.或時(shí),,時(shí),,所以在和上都是減函數(shù),在上是增函數(shù),時(shí)取極小值,又當(dāng)時(shí),.所以時(shí),關(guān)于的方程無(wú)解,或時(shí)關(guān)于的方程只有一個(gè)解,時(shí),關(guān)于的方程有兩個(gè)不同解.因此,時(shí)函數(shù)沒有零點(diǎn),或時(shí)函數(shù)有且只有一個(gè)零點(diǎn),時(shí),函數(shù)有兩個(gè)零點(diǎn).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查導(dǎo)數(shù)的應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)判斷函數(shù)的零點(diǎn),解題的關(guān)鍵是由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點(diǎn)情況,考查數(shù)形結(jié)合的思想,屬于中檔題20、(1);(2).【解析】(1)根據(jù)給定條件可得點(diǎn)P到點(diǎn)的距離等于它到直線的距離,再由拋物線定義即可得解.(2)由(1)設(shè)出點(diǎn)M,N的坐標(biāo),再結(jié)合給定條件及三角形面積定理列式,借助均值不等式計(jì)算作答.【小問1詳解】因點(diǎn)P到點(diǎn)的距離比它到直線的距離小1,顯然點(diǎn)P與F在直線l同側(cè),于是得點(diǎn)P到點(diǎn)的距離等于它到直線的距離,則點(diǎn)P的軌跡是以F為焦點(diǎn),直線為準(zhǔn)線的拋物線,所以點(diǎn)P的軌跡方程是.【小問2詳解】由(1)設(shè)點(diǎn),,且,因,則,解得,S,當(dāng)且僅當(dāng),即時(shí)取“=”,所以面積的最小值為.【點(diǎn)睛】思路點(diǎn)睛:圓錐曲線中的幾何圖形面積范圍或最值問題,可以以直線的斜率、橫(縱)截距、圖形上動(dòng)點(diǎn)的橫(縱)坐標(biāo)為變量,建立函數(shù)關(guān)系求解作答.21、(1)選擇條件見解析,(2)【解析】(1)設(shè)等差數(shù)列的公差為,由,得到,選①,聯(lián)立求解;選②,聯(lián)立求解;選③,聯(lián)立求解;(2)由(1)知,令求解.【
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣元市人民檢察院關(guān)于公開招聘警務(wù)輔助人員的(5人)參考題庫(kù)附答案
- 新余市2025年市直單位公開遴選公務(wù)員考試備考題庫(kù)附答案
- 紅領(lǐng)巾安全演講集
- 2026西安未央?yún)^(qū)徐家灣社區(qū)衛(wèi)生服務(wù)中心招聘參考題庫(kù)附答案
- 2026四川樂山市沐川縣沐溪鎮(zhèn)幸福社區(qū)招募高校畢業(yè)生(青年)見習(xí)人員2人參考題庫(kù)必考題
- 中國(guó)華錄集團(tuán)有限公司2026屆校園招聘正式開啟參考題庫(kù)附答案
- 2026年陜西眉太麟法高速項(xiàng)目招聘(11人)備考題庫(kù)附答案
- 2025 小學(xué)五年級(jí)科學(xué)下冊(cè)靜脈識(shí)別的血管分布與活體檢測(cè)課件
- 邳州市輔警考試題庫(kù)2025
- 2026四川內(nèi)江市公安局高新技術(shù)開發(fā)區(qū)分局第一次招聘警務(wù)輔助人員15人備考題庫(kù)帶答案詳解
- 體溫單模板完整版本
- 武漢市2024屆高中畢業(yè)生二月調(diào)研考試(二調(diào))英語(yǔ)試卷(含答案)
- 天然美肌無(wú)添加的護(hù)膚品
- 《正常人體形態(tài)學(xué)》考試復(fù)習(xí)題庫(kù)大全(含答案)
- 湖南省長(zhǎng)沙市外國(guó)語(yǔ)學(xué)校 2021-2022學(xué)年高一數(shù)學(xué)文模擬試卷含解析
- 3D車載蓋板玻璃項(xiàng)目商業(yè)計(jì)劃書
- 阿米巴經(jīng)營(yíng)管理培訓(xùn)課件
- 我國(guó)的宗教政策-(共38張)專題培訓(xùn)課件
- 鋁材廠煲模作業(yè)指導(dǎo)書
- 【行測(cè)題庫(kù)】圖形推理題庫(kù)
- GB/T 43293-2022鞋號(hào)
評(píng)論
0/150
提交評(píng)論