版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市豐臺區(qū)第十二中學2026屆數(shù)學高二上期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,從集合A中任取一點P,則點P滿足約束條件的概率為()A. B.C. D.2.若,,且,則()A. B.C. D.3.已知數(shù)列中,,(),則()A. B.C. D.24.空間直角坐標系中,已知則點關于平面的對稱點的坐標為()A. B.C. D.5.如圖是一水平放置的青花瓷.它的外形為單葉雙曲面,可看成是雙曲線的一部分繞其虛軸旋轉所形成的曲面,且其外形上下對稱.花瓶的最小直徑為,瓶口直徑為,瓶高為,則該雙曲線的虛軸長為()A. B.C. D.456.命題:“,”的否定形式為()A., B.,C., D.,7.已知雙曲線的左、右焦點分別為,,過作圓的切線分別交雙曲線的左、右兩支于,,且,則雙曲線的漸近線方程為()A. B.C. D.8.已知三棱錐的各頂點都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.9.已知雙曲線的離心率為5,則其標準方程為()A. B.C. D.10.設雙曲線()的焦距為12,則()A.1 B.2C.3 D.411.南宋數(shù)學家楊輝在《詳解九章算術法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列,這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23,則該數(shù)列的第31項為()A.336 B.467C.483 D.60112.已知奇函數(shù),則的解集為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的長軸在軸上,若焦距為4,則__________.14.已知直線與直線平行,則實數(shù)______15.已知,,若x,a,b,y成等比數(shù)列,x,c,d,y成等差數(shù)列,則的最小值為_____________.16.已知數(shù)列{an}滿足an+2=an+1-an(n∈N*),且a1=2,a2=3,則a2022的值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點,離心率為(1)求橢圓的標準方程;(2)過橢圓的上頂點作直線l交拋物線于A,B兩點,O為坐標原點①求證:;②設OA,OB分別與橢圓相交于C,D兩點,過點O作直線CD的垂線OH,垂足為H,證明:為定值18.(12分)已知a,b,c分別為△ABC三個內角A,B,C的對邊,,,△ABC的面積為(1)求a;(2)若D為BC邊上一點,且∠BAD=,求∠ADC的正弦值19.(12分)已知的三個頂點的坐標分別為,,(1)求邊AC上的中線所在直線方程;(2)求的面積20.(12分)如圖,在正方體中,分別是,的中點.求證:(1)平面;(2)平面平面.21.(12分)如圖①,等腰梯形中,,分別為的中點,,現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中:(1)證明:平面平面;(2)求四棱錐的體積.22.(10分)已知數(shù)列的前n項和為,且.(1)求的通項公式;.(2)求數(shù)列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據圓的性質,結合兩條直線的位置關系、幾何概型計算公式進行求解即可.【詳解】,圓心坐標為,半徑為,直線互相垂直,且交點為,由圓的性質可知:點P滿足約束條件的概率為,故選:C2、A【解析】由于對數(shù)函數(shù)的存在,故需要對進行放縮,結合(需證明),可放縮為,利用等號成立可求出,進而得解.【詳解】令,,故在上單調遞減,在上單調遞增,,故,即,當且僅當,等號成立.所以,當且僅當時,等號成立,又,所以,即,所以,又,所以,,故故選:A3、A【解析】由已知條件求出,可得數(shù)是以3為周期的周期數(shù)列,從而可得,進而可求得答案【詳解】因為,(),所以,所以數(shù)列的周期為3,,故選:A4、D【解析】根據空間直角坐標系的對稱性可得答案.【詳解】根據空間直角坐標系的對稱性可得關于平面的對稱點的坐標為,故選:D.5、C【解析】設雙曲線方程為,,由已知可得,并求得雙曲線上一點的坐標,把點的坐標代入雙曲線方程,求解,即可得到雙曲線的虛軸長【詳解】設點是雙曲線與截面的一個交點,設雙曲線的方程為:,花瓶的最小直徑,則,由瓶口直徑為,瓶高為,可得,故,解得,該雙曲線的虛軸長為故選:6、D【解析】根據含一個量詞的命題的否定方法直接得到結果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結論.7、D【解析】直線的斜率為,計算,,利用余弦定理得到,化簡知,得到答案【詳解】由題意知直線的斜率為,,又,由雙曲線定義知,,.由余弦定理:,,即,即,解得.故雙曲線漸近線的方程為.故答案選D【點睛】本題考查了雙曲線的漸近線,與圓的關系,意在考查學生的綜合應用能力和計算能力.8、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點睛】與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數(shù)量關系,并作出合適的截面圖,如球內切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.9、D【解析】雙曲線離心率公式和a、b、c的關系即可求得m,從而得到雙曲線的標準方程.【詳解】∵雙曲線,∴,又,∴,∵離心率為,∴,解得,∴雙曲線方程.故選:D.10、B【解析】根據可得關于的方程,解方程即可得答案.【詳解】因為可化為,所以,則.故選:B.【點睛】本題考查已知雙曲線的焦距求參數(shù)的值,考查函數(shù)與方程思想,考查運算求解能力,屬于基礎題.11、B【解析】先由遞推關系利用累加法求出通項公式,直接帶入即可求得.【詳解】根據題意,數(shù)列2,3,5,8,12,17,23……滿足,,所以該數(shù)列的第31項為.故選:B12、A【解析】先由求出的值,進而可得的解析式,對求導,利用基本不等式可判斷恒成立,可判斷的單調性,根據單調性脫掉,再解不等式即可.【詳解】的定義域為,因為是奇函數(shù),所以,可得:,所以,經檢驗是奇函數(shù),符合題意,所以,因為,所以,當且僅當即時等號成立,所以在上單調遞增,由可得,即,解得:或,所以的解集為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】根據橢圓方程列方程,解得結果.【詳解】因為橢圓的長軸在軸上,焦距為4,所以故答案為:8【點睛】本題考查根據橢圓方程求參數(shù),考查基本分析求解能力,屬基礎題.14、【解析】分類討論,兩種情況,結合直線平行的知識得出實數(shù).【詳解】當時,直線與直線垂直;當時,,則且,解得.故答案為:15、4【解析】根據等差數(shù)列和等比數(shù)列性質把用表示,然后由基本不等式得最小值【詳解】由題意,,所以,當且僅當時等號成立故答案為:416、【解析】根據遞推關系求出數(shù)列的前幾項,得周期性,然后可得結論【詳解】由題意,,,,,,所以數(shù)列是周期數(shù)列,周期為6,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)①證明見解析;②證明見解析【解析】(1)根據離心率及過點求出求解即可;(2)①設直線l的方程為,利用向量的數(shù)量積計算證明即可;②設直線CD方程為,利用求出,再由點O到直線CD的距離即可求證.【小問1詳解】因為,所以,又因為,解得,,所以橢圓的方程為;【小問2詳解】①證明:設,,依題意,直線l斜率存在,設直線l的方程為,聯(lián)立方程,消去y得,所以,又因為,所以,因此,②證明:設,,設直線CD方程為,因為,所以,則,聯(lián)立,得當時,,則所以,即滿足則,即為定值18、(1)(2)【解析】(1)利用面積公式及余弦定理可求解;(2)由正弦定理得到,再運用同角函數(shù)的關系得到,最后運用正弦的兩角和公式求解即可.【小問1詳解】∵,,,∴由余弦定理:,∴【小問2詳解】在中,由正弦定理得,∴,易知B為銳角,∴,∴19、(1)(2)【解析】(1)先求得的中點,由此求得邊AC上的中線所在直線方程.(2)結合點到直線距離公式求得的面積.【小問1詳解】的中點為,所以邊AC上的中線所在直線方程為.【小問2詳解】直線的方程為,到直線的距離為,,所以.20、證明見解析【解析】(1)連接,根據線面平行的判定定理,即可證明結論成立;(2)連接,,先由線面平行的判定定理,得到平面,再由(1)的結果,結合面面平行的判定定理,即可證明結論成立.【詳解】(1)如圖,連接.∵四邊形是正方形,是的中點,∴是的中點.又∵是的中點,∴.∵平面,平面,∴平面.(2)連接,,∵四邊形是正方形,是的中點,∴是的中點.又∵是中點,∴.∵平面平面,∴平面.由(1)知平面,且,∴平面平面.【點睛】本題主要考查證明線面平行與面面平行,熟記線面平行的判定定理以及面面平行的判定定理即可,屬于??碱}型.21、(1)證明見解析.(2)2【解析】(1)根據面面平行的判定定理結合已知條件即可證明;(2)將所求四棱錐的體積轉化為求即可.【小問1詳解】證明:因為,面,面,所以面,同理面,又因為面,所以面面.【小問2詳解】解:因為在圖①等腰梯形中,分別為的中點,所以,在圖②多面體中,因為,面,,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 苯酚丙酮裝置操作工誠信考核試卷含答案
- 脫脂工安全技能考核試卷含答案
- 名人介紹教學課件
- 老年用藥依從性術語的醫(yī)患溝通策略-1
- 2026上??萍即髮W物質科學與技術學院電鏡平臺招聘工程師1名備考題庫及1套參考答案詳解
- 基因與遺傳?。簜惱碚n件
- 生理學核心概念:心肌收縮力調節(jié)課件
- 公共交通運營安全管理責任制度
- 2026年及未來5年市場數(shù)據中國衛(wèi)星導航行業(yè)發(fā)展運行現(xiàn)狀及發(fā)展趨勢預測報告
- 2026年及未來5年市場數(shù)據中國端游行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃報告
- 四川省高等教育自學考試畢業(yè)生登記表【模板】
- 專題五 以新發(fā)展理念引領高質量發(fā)展
- (完整word)長沙胡博士工作室公益發(fā)布新加坡SM2考試物理全真模擬試卷(附答案解析)
- GB/T 6682-2008分析實驗室用水規(guī)格和試驗方法
- GB/T 22417-2008叉車貨叉叉套和伸縮式貨叉技術性能和強度要求
- GB/T 1.1-2009標準化工作導則 第1部分:標準的結構和編寫
- 長興中學提前招生試卷
- 安全事故案例-圖片課件
- 螺紋的基礎知識
- 九年級(初三)第一學期期末考試后家長會課件
- 保健食品GMP質量體系文件
評論
0/150
提交評論