2026屆寧夏銀川市興慶區(qū)一中數學高三第一學期期末監(jiān)測試題含解析_第1頁
2026屆寧夏銀川市興慶區(qū)一中數學高三第一學期期末監(jiān)測試題含解析_第2頁
2026屆寧夏銀川市興慶區(qū)一中數學高三第一學期期末監(jiān)測試題含解析_第3頁
2026屆寧夏銀川市興慶區(qū)一中數學高三第一學期期末監(jiān)測試題含解析_第4頁
2026屆寧夏銀川市興慶區(qū)一中數學高三第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆寧夏銀川市興慶區(qū)一中數學高三第一學期期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.2.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.53.函數的圖象與函數的圖象的交點橫坐標的和為()A. B. C. D.4.“完全數”是一些特殊的自然數,它所有的真因子(即除了自身以外的約數)的和恰好等于它本身.古希臘數學家畢達哥拉斯公元前六世紀發(fā)現了第一、二個“完全數”6和28,進一步研究發(fā)現后續(xù)三個完全數”分別為496,8128,33550336,現將這五個“完全數”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為()A. B. C. D.5.根據黨中央關于“精準”脫貧的要求,我市某農業(yè)經濟部門派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.6.已知,則的大小關系為A. B. C. D.7.已知各項都為正的等差數列中,,若,,成等比數列,則()A. B. C. D.8.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.19.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側面積為10.若復數滿足,復數的共軛復數是,則()A.1 B.0 C. D.11.已知數列是公比為的等比數列,且,若數列是遞增數列,則的取值范圍為()A. B. C. D.12.已知集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,且,則實數m的值是________.14.三對父子去參加親子活動,坐在如圖所示的6個位置上,有且僅有一對父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).15.已知集合,其中,.且,則集合中所有元素的和為_________.16.在棱長為6的正方體中,是的中點,點是面,所在平面內的動點,且滿足,則三棱錐的體積的最大值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩形中,,E,F分別為,的中點.沿將矩形折起,使,如圖所示.設P、Q分別為線段,的中點,連接.(1)求證:平面;(2)求二面角的余弦值.18.(12分)已知函數.(1)若,求證:.(2)討論函數的極值;(3)是否存在實數,使得不等式在上恒成立?若存在,求出的最小值;若不存在,請說明理由.19.(12分)某網絡商城在年月日開展“慶元旦”活動,當天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當天銷售額的平均值;(2)估計抽取的家店鋪中元旦當天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在中的個數的分布列和數學期望.20.(12分)己知的內角的對邊分別為.設(1)求的值;(2)若,且,求的值.21.(12分)2019年9月26日,攜程網發(fā)布《2019國慶假期旅游出行趨勢預測報告》,2018年國慶假日期間,西安共接待游客1692.56萬人次,今年國慶有望超過2000萬人次,成為西部省份中接待游客量最多的城市.旅游公司規(guī)定:若公司某位導游接待旅客,旅游年總收人不低于40(單位:萬元),則稱該導游為優(yōu)秀導游.經驗表明,如果公司的優(yōu)秀導游率越高,則該公司的影響度越高.已知甲、乙家旅游公司各有導游40名,統(tǒng)計他們一年內旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數分布表如下:分組頻數(1)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?(2)從甲、乙兩家公司旅游總收人在(單位:萬元)的導游中,隨機抽取3人進行業(yè)務培訓,設來自甲公司的人數為,求的分布列及數學期望.22.(10分)已知橢圓的離心率為,且以原點O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.(1)求橢圓的標準方程;(2)已知動直線l過右焦點F,且與橢圓C交于A、B兩點,已知Q點坐標為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

可設的內切圓的圓心為,設,,可得,由切線的性質:切線長相等推得,解得、,并設,求得的值,推得為等邊三角形,由焦距為三角形的高,結合離心率公式可得所求值.【詳解】可設的內切圓的圓心為,為切點,且為中點,,設,,則,且有,解得,,設,,設圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質,注意運用三角形的內心性質和等邊三角形的性質,切線的性質,考查化簡運算能力,屬于中檔題.2、D【解析】

根據雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.3、B【解析】

根據兩個函數相等,求出所有交點的橫坐標,然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數的圖象與函數的圖象交點的橫坐標的和,故選B.【點睛】本題主要考查三角函數的圖象及給值求角,側重考查數學建模和數學運算的核心素養(yǎng).4、C【解析】

先求出五個“完全數”隨機分為兩組,一組2個,另一組3個的基本事件總數為,再求出6和28恰好在同一組包含的基本事件個數,根據即可求出6和28不在同一組的概率.【詳解】解:根據題意,將五個“完全數”隨機分為兩組,一組2個,另一組3個,則基本事件總數為,則6和28恰好在同一組包含的基本事件個數,∴6和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數的應用.5、A【解析】

每個縣區(qū)至少派一位專家,基本事件總數,甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數,由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家基本事件總數:甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數:甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.6、D【解析】

分析:由題意結合對數的性質,對數函數的單調性和指數的性質整理計算即可確定a,b,c的大小關系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數冪的大小的比較,我們通常都是運用指數函數的單調性,但很多時候,因冪的底數或指數不相同,不能直接利用函數的單調性進行比較.這就必須掌握一些特殊方法.在進行指數冪的大小比較時,若底數不同,則首先考慮將其轉化成同底數,然后再根據指數函數的單調性進行判斷.對于不同底而同指數的指數冪的大小的比較,利用圖象法求解,既快捷,又準確.7、A【解析】試題分析:設公差為或(舍),故選A.考點:等差數列及其性質.8、C【解析】

根據雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.9、C【解析】

根據三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點,底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側面積為.故正確的為C.故選:C.【點睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中檔題.10、C【解析】

根據復數代數形式的運算法則求出,再根據共軛復數的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復數代數形式的運算法則,考查共軛復數的概念,屬于基礎題.11、D【解析】

先根據已知條件求解出的通項公式,然后根據的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數列是單調遞增數列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數列通項公式求解以及根據數列單調性求解參數范圍,難度一般.已知數列單調性,可根據之間的大小關系分析問題.12、C【解析】

解不等式得出集合A,根據交集的定義寫出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點睛】本題考查了解不等式與交集的運算問題,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

根據即可得出,從而求出m的值.【詳解】解:∵;∴;∴m=1.故答案為:1.【點睛】本題考查向量垂直的充要條件,向量數量積的坐標運算.14、192【解析】

根據題意,分步進行分析:①,在三對父子中任選1對,安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,由分步計數原理計算可得答案.【詳解】根據題意,分步進行分析:①,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:【點睛】本題考查排列、組合的應用,涉及分步計數原理的應用,屬于基礎題.15、2889【解析】

先計算集合中最小的數為,最大的數,可得,求和即得解.【詳解】當時,集合中最小數;當時,得到集合中最大的數;故答案為:2889【點睛】本題考查了數列與集合綜合,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.16、【解析】

根據與相似,,過作于,利用體積公式求解OP最值,根據勾股定理得出,,利用函數單調性判斷求解即可.【詳解】∵在棱長為6的正方體中,是的中點,點是面所在平面內的動點,且滿足,又,∴與相似∴,即,過作于,設,,∴,化簡得:,,根據函數單調性判斷,時,取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點睛】本題考查三角形相似,幾何體體積以及函數單調性的綜合應用,難度一般.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)取中點R,連接,,可知中,且,由Q是中點,可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標系,求得半平面的法向量:,然后利用空間向量的相關結論可求得二面角的余弦值.【詳解】(1)取中點R,連接,,則在中,,且,又Q是中點,所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內作交于點G,以E為原點,,,分別為x,y,x軸,建立如圖所示的空間直角坐標系,則各點坐標為,,,所以,,設平面的一個法向量為,則即,取,得,又平面的一個法向量為,所以.因此,二面角的余弦值為【點睛】本題考查線面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運算求解能力,難度一般.18、(1)證明見解析;(2)見解析;(3)存在,1.【解析】

(1),求出單調區(qū)間,進而求出,即可證明結論;(2)對(或)是否恒成立分類討論,若恒成立,沒有極值點,若不恒成立,求出的解,即可求出結論;(3)令,可證恒成立,而,由(2)得,在為減函數,在上單調遞減,在都存在,不滿足,當時,設,且,只需求出在單調遞增時的取值范圍即可.【詳解】(1),,,當時,,當時,,∴,故.(2)由題知,,,①當時,,所以在上單調遞減,沒有極值;②當時,,得,當時,;當時,,所以在上單調遞減,在上單調遞增.故在處取得極小值,無極大值.(3)不妨令,設在恒成立,在單調遞增,,在恒成立,所以,當時,,由(2)知,當時,在上單調遞減,恒成立;所以不等式在上恒成立,只能.當時,,由(1)知在上單調遞減,所以,不滿足題意.當時,設,因為,所以,,即,所以在上單調遞增,又,所以時,恒成立,即恒成立,故存在,使得不等式在上恒成立,此時的最小值是1.【點睛】本題考查導數綜合應用,涉及到函數的單調性、極值最值、不等式證明,考查分類討論思想,意在考查直觀想象、邏輯推理、數學計算能力,屬于較難題.19、(1)元;(2)32家;(3)分布列見解析;【解析】

(1)根據頻率分布直方圖求出各組頻率,再由平均數公式,即可求解;(2)求出的頻率即可;(3)中的個數的所有可能取值為,,,求出可能值的概率,得到分布列,由期望公式即可求解.【詳解】(1)頻率分布直方圖銷售額的平均值為千元,所以銷售額的平均值為元;(2)不低于元的有家(3)銷售額在的店鋪有家,銷售額在的店鋪有家.選取兩家,設銷售額在的有家.則的所有可能取值為,,.,,所以的分布列為數學期望【點睛】本題考查應用頻率分布直方圖求平均數和頻數,考查離散型隨機變量的分布列和期望,屬于基礎題.20、(1)(2)【解析】

(1)由正弦定理將,轉化,即,由余弦定理求得,再由平方關系得再求解.(2)由,得,結合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因為,則,因為,故,故,解得,故,則.【點睛】本題考查正弦定理、余弦定理、三角形的面積公式,考查運算求解能力以及化歸與轉化思想,屬于中檔題.21、(1),乙公司影響度高;(2)見解析,【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論