版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山西省運(yùn)城市新絳縣第二中學(xué)2026屆高三上數(shù)學(xué)期末考試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)分別是雙線的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(diǎn)(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.2.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.23.若函數(shù)恰有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.4.若,則實(shí)數(shù)的大小關(guān)系為()A. B. C. D.5.已知符號(hào)函數(shù)sgnxf(x)是定義在R上的減函數(shù),g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]6.在復(fù)平面內(nèi),復(fù)數(shù)(,)對(duì)應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.167.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個(gè)八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個(gè)爻組成,其中“”表示一個(gè)陽爻,“”表示一個(gè)陰爻).若從含有兩個(gè)及以上陽爻的卦中任取兩卦,這兩卦的六個(gè)爻中都恰有兩個(gè)陽爻的概率為()A. B. C. D.8.定義在上的偶函數(shù),對(duì),,且,有成立,已知,,,則,,的大小關(guān)系為()A. B. C. D.9.如果實(shí)數(shù)滿足條件,那么的最大值為()A. B. C. D.10.設(shè)復(fù)數(shù)滿足,則()A.1 B.-1 C. D.11.展開項(xiàng)中的常數(shù)項(xiàng)為A.1 B.11 C.-19 D.5112.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知曲線的方程為,其圖象經(jīng)過點(diǎn),則曲線在點(diǎn)處的切線方程是____________.14.已知直線被圓截得的弦長為2,則的值為__15.圓關(guān)于直線的對(duì)稱圓的方程為_____.16.在中,角A,B,C的對(duì)邊分別為a,b,c,且,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.18.(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國家歷史文化名城.其中著名的景點(diǎn)有黃鶴樓、戶部巷、東湖風(fēng)景區(qū)等等.(1)為了解“五·一”勞動(dòng)節(jié)當(dāng)日江城某旅游景點(diǎn)游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機(jī)抽取了1000人,制成了如圖的頻率分布直方圖:現(xiàn)從年齡在內(nèi)的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機(jī)抽取4人,記4人中年齡在內(nèi)的人數(shù)為,求;(2)為了給游客提供更舒適的旅游體驗(yàn),該旅游景點(diǎn)游船中心計(jì)劃在2020年勞動(dòng)節(jié)當(dāng)日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數(shù)據(jù)資料顯示每年勞動(dòng)節(jié)當(dāng)日客流量(單位:萬人)都大于1.將每年勞動(dòng)節(jié)當(dāng)日客流量數(shù)據(jù)分成3個(gè)區(qū)間整理得表:勞動(dòng)節(jié)當(dāng)日客流量頻數(shù)(年)244以這10年的數(shù)據(jù)資料記錄的3個(gè)區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動(dòng)節(jié)當(dāng)日客流量相互獨(dú)立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動(dòng)節(jié)當(dāng)日型游船最多使用量(單位:艘)要受當(dāng)日客流量(單位:萬人)的影響,其關(guān)聯(lián)關(guān)系如下表:勞動(dòng)節(jié)當(dāng)日客流量型游船最多使用量123若某艘型游船在勞動(dòng)節(jié)當(dāng)日被投入且被使用,則游船中心當(dāng)日可獲得利潤3萬元;若某艘型游船勞動(dòng)節(jié)當(dāng)日被投入?yún)s不被使用,則游船中心當(dāng)日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動(dòng)節(jié)當(dāng)日獲得的總利潤,的數(shù)學(xué)期望越大游船中心在勞動(dòng)節(jié)當(dāng)日獲得的總利潤越大,問該游船中心在2020年勞動(dòng)節(jié)當(dāng)日應(yīng)投入多少艘型游船才能使其當(dāng)日獲得的總利潤最大?19.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點(diǎn),平面平面,.(1)求證:平面;(2)求證:平面.20.(12分)已知函數(shù)的最小正周期是,且當(dāng)時(shí),取得最大值.(1)求的解析式;(2)作出在上的圖象(要列表).21.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為.(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線l與曲線C交于不同的兩點(diǎn)A、B,求的值.22.(10分)設(shè)橢圓的右焦點(diǎn)為,過的直線與交于兩點(diǎn),點(diǎn)的坐標(biāo)為.(1)當(dāng)直線的傾斜角為時(shí),求線段AB的中點(diǎn)的橫坐標(biāo);(2)設(shè)點(diǎn)A關(guān)于軸的對(duì)稱點(diǎn)為C,求證:M,B,C三點(diǎn)共線;(3)設(shè)過點(diǎn)M的直線交橢圓于兩點(diǎn),若橢圓上存在點(diǎn)P,使得(其中O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因?yàn)樗倪呅螢榱庑危?,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點(diǎn)睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.2、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.3、B【解析】
求導(dǎo)函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個(gè)零點(diǎn),即可求實(shí)數(shù)的取值范圍.【詳解】函數(shù)的導(dǎo)數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點(diǎn),函數(shù)的極值為:,函數(shù)恰有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是:.故選B.【點(diǎn)睛】該題考查的是有關(guān)結(jié)合函數(shù)零點(diǎn)個(gè)數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應(yīng)用導(dǎo)數(shù)研究函數(shù)圖象的走向,利用數(shù)形結(jié)合思想,轉(zhuǎn)化為函數(shù)圖象間交點(diǎn)個(gè)數(shù)的問題,難度不大.4、A【解析】
將化成以為底的對(duì)數(shù),即可判斷的大小關(guān)系;由對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對(duì)數(shù)函數(shù)的性質(zhì)可得.又因?yàn)?,?故選:A.【點(diǎn)睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)的運(yùn)算性質(zhì).兩個(gè)對(duì)數(shù)型的數(shù)字比較大小時(shí),底數(shù)相同,則構(gòu)造對(duì)數(shù)函數(shù),結(jié)合對(duì)數(shù)的單調(diào)性可判斷大??;若真數(shù)相同,則結(jié)合對(duì)數(shù)函數(shù)的圖像或者換底公式可判斷大??;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.5、A【解析】
根據(jù)符號(hào)函數(shù)的解析式,結(jié)合f(x)的單調(diào)性分析即可得解.【詳解】根據(jù)題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數(shù),當(dāng)x>0時(shí),x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時(shí)sgn[g(x)]=1,當(dāng)x=0時(shí),x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時(shí)sgn[g(x)]=0,當(dāng)x<0時(shí),x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時(shí)sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點(diǎn)睛】此題考查函數(shù)新定義問題,涉及函數(shù)單調(diào)性辨析,關(guān)鍵在于讀懂定義,根據(jù)自變量的取值范圍分類討論.6、D【解析】
根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點(diǎn)睛】本題考查了復(fù)數(shù)的新定義題目、同時(shí)考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.7、B【解析】
基本事件總數(shù)為個(gè),都恰有兩個(gè)陽爻包含的基本事件個(gè)數(shù)為個(gè),由此求出概率.【詳解】解:由圖可知,含有兩個(gè)及以上陽爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個(gè),其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個(gè),所以,所求的概率.故選:B.【點(diǎn)睛】本題滲透傳統(tǒng)文化,考查概率、計(jì)數(shù)原理等基本知識(shí),考查抽象概括能力和應(yīng)用意識(shí),屬于基礎(chǔ)題.8、A【解析】
根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對(duì),,且,有在上遞增因?yàn)槎x在上的偶函數(shù)所以在上遞減又因?yàn)?,,所以故選:A【點(diǎn)睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基礎(chǔ)題.9、B【解析】
解:當(dāng)直線過點(diǎn)時(shí),最大,故選B10、B【解析】
利用復(fù)數(shù)的四則運(yùn)算即可求解.【詳解】由.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算,需掌握復(fù)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.11、B【解析】
展開式中的每一項(xiàng)是由每個(gè)括號(hào)中各出一項(xiàng)組成的,所以可分成三種情況.【詳解】展開式中的項(xiàng)為常數(shù)項(xiàng),有3種情況:(1)5個(gè)括號(hào)都出1,即;(2)兩個(gè)括號(hào)出,兩個(gè)括號(hào)出,一個(gè)括號(hào)出1,即;(3)一個(gè)括號(hào)出,一個(gè)括號(hào)出,三個(gè)括號(hào)出1,即;所以展開項(xiàng)中的常數(shù)項(xiàng)為,故選B.【點(diǎn)睛】本題考查二項(xiàng)式定理知識(shí)的生成過程,考查定理的本質(zhì),即展開式中每一項(xiàng)是由每個(gè)括號(hào)各出一項(xiàng)相乘組合而成的.12、C【解析】所對(duì)應(yīng)的點(diǎn)為(-1,-2)位于第三象限.【考點(diǎn)定位】本題只考查了復(fù)平面的概念,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依題意,將點(diǎn)的坐標(biāo)代入曲線的方程中,解得.由,得,則曲線在點(diǎn)處切線的斜率,所以在點(diǎn)處的切線方程是,即.14、1【解析】
根據(jù)弦長為半徑的兩倍,得直線經(jīng)過圓心,將圓心坐標(biāo)代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,
因?yàn)橹本€被圓截得的弦長為2,
所以直線經(jīng)過圓心(1,1),
,解得.故答案為:1.【點(diǎn)睛】本題考查了直線與圓相交的性質(zhì),屬基礎(chǔ)題.15、【解析】
求出圓心關(guān)于直線的對(duì)稱點(diǎn),即可得解.【詳解】的圓心為,關(guān)于對(duì)稱點(diǎn)設(shè)為,則有:,解得,所以對(duì)稱后的圓心為,故所求圓的方程為.故答案為:【點(diǎn)睛】此題考查求圓關(guān)于直線的對(duì)稱圓方程,關(guān)鍵在于準(zhǔn)確求出圓心關(guān)于直線的對(duì)稱點(diǎn)坐標(biāo).16、【解析】
利用正弦定理將邊化角,即可容易求得結(jié)果.【詳解】由正弦定理可知,,即.故答案為:.【點(diǎn)睛】本題考查利用正弦定理實(shí)現(xiàn)邊角互化,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2).【解析】
(1)將等式變形為,進(jìn)而可證明出是等差數(shù)列,確定數(shù)列的首項(xiàng)和公差,可求得的表達(dá)式,進(jìn)而可得出數(shù)列的通項(xiàng)公式;(2)利用錯(cuò)位相減法可求得數(shù)列的前項(xiàng)和.【詳解】(1)因?yàn)?,所以,即,所以?shù)列是等差數(shù)列,且公差,其首項(xiàng)所以,解得;(2),①,②①②,得,所以.【點(diǎn)睛】本題考查利用遞推公式證明等差數(shù)列,同時(shí)也考查了錯(cuò)位相減法求和,考查推理能力與計(jì)算能力,屬于中等題.18、(1);(2)投入3艘型游船使其當(dāng)日獲得的總利潤最大【解析】
(1)首先計(jì)算出在,內(nèi)抽取的人數(shù),然后利用超幾何分布概率計(jì)算公式,計(jì)算出.(2)分別計(jì)算出投入艘游艇時(shí),總利潤的期望值,由此確定當(dāng)日游艇投放量.【詳解】(1)年齡在內(nèi)的游客人數(shù)為150,年齡在內(nèi)的游客人數(shù)為100;若采用分層抽樣的方法抽取10人,則年齡在內(nèi)的人數(shù)為6人,年齡在內(nèi)的人數(shù)為4人.可得.(2)①當(dāng)投入1艘型游船時(shí),因客流量總大于1,則(萬元).②當(dāng)投入2艘型游船時(shí),若,則,此時(shí);若,則,此時(shí);此時(shí)的分布列如下表:2.56此時(shí)(萬元).③當(dāng)投入3艘型游船時(shí),若,則,此時(shí);若,則,此時(shí);若,則,此時(shí);此時(shí)的分布列如下表:25.59此時(shí)(萬元).由于,則該游船中心在2020年勞動(dòng)節(jié)當(dāng)日應(yīng)投入3艘型游船使其當(dāng)日獲得的總利潤最大.【點(diǎn)睛】本小題主要考查分層抽樣,考查超幾何分布概率計(jì)算公式,考查隨機(jī)變量分布列和期望的求法,考查分析與思考問題的能力,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.19、(1)見解析;(2)見解析【解析】
(1)根據(jù),分別是,的中點(diǎn),即可證明,從而可證平面;(2)先根據(jù)為正三角形,且D是的中點(diǎn),證出,再根據(jù)平面平面,得到平面,從而得到,結(jié)合,即可得證.【詳解】(1)∵,分別是,的中點(diǎn)∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點(diǎn)∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.【點(diǎn)睛】本題考查直線與平面平行的判定,面面垂直的性質(zhì)等,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng),中檔題.20、(1);(2)見解析.【解析】
(1)根據(jù)函數(shù)的最小正周期可求出的值,由該函數(shù)的最大值可得出的值,再由,結(jié)合的取值范圍可求得的值,由此可得出函數(shù)的解析式;(2)由計(jì)算出的取值范圍,據(jù)此列表、描點(diǎn)、連線可得出函數(shù)在區(qū)間上的圖象.【詳解】(1)因?yàn)楹瘮?shù)的最小正周期是,所以.又因?yàn)楫?dāng)時(shí),函數(shù)取得最大值,所以,同時(shí),得,因?yàn)?,所以,所以;?)因?yàn)?,所以,列表如下:描點(diǎn)、連線得圖象:【點(diǎn)睛】本題考查正弦函數(shù)解析式的求解,同時(shí)也考查了利用五點(diǎn)作圖法作圖,考查分析問題與解決問題的能力,屬于中等題.21、(1),(2)【解析】
(1)利用極坐標(biāo)與直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026黑龍江齊齊哈爾市富??h房產(chǎn)和物業(yè)服務(wù)中心招聘公益性崗位人員2人備考題庫及完整答案詳解一套
- 2025 小學(xué)一年級(jí)道德與法治上冊(cè)電影院里不吵鬧課件
- 2026年高鐵安全駕駛規(guī)范操作培訓(xùn)
- 職業(yè)健康檔案電子化操作全流程審計(jì)追蹤體系
- 職業(yè)健康促進(jìn)的企業(yè)協(xié)同策略
- 職業(yè)健康與職業(yè)康復(fù)的政策支持體系構(gòu)建
- 陜西2025年陜西省煙草專賣局(公司)生產(chǎn)操作類崗位應(yīng)屆畢業(yè)生招聘12人筆試歷年參考題庫附帶答案詳解
- 職業(yè)健康與員工職業(yè)發(fā)展關(guān)聯(lián)
- 綿陽四川綿陽三臺(tái)縣鄉(xiāng)鎮(zhèn)事業(yè)單位從“大學(xué)生志愿服務(wù)西部”項(xiàng)目人員招聘7人筆試歷年參考題庫附帶答案詳解
- 濱州2025年山東濱州濱城區(qū)招聘中小學(xué)特殊教育學(xué)校教師217人筆試歷年參考題庫附帶答案詳解
- 航空安保審計(jì)培訓(xùn)課件
- 高層建筑滅火器配置專項(xiàng)施工方案
- 2023-2024學(xué)年廣東深圳紅嶺中學(xué)高二(上)學(xué)段一數(shù)學(xué)試題含答案
- 2026元旦主題班會(huì):馬年猜猜樂馬年成語教學(xué)課件
- 2025中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所第二批招聘創(chuàng)新中心科研崗筆試筆試參考試題附答案解析
- 反洗錢審計(jì)師反洗錢審計(jì)技巧與方法
- 檢驗(yàn)科安全生產(chǎn)培訓(xùn)課件
- 爆破施工安全管理方案
- 2026全國青少年模擬飛行考核理論知識(shí)題庫40題含答案(綜合卷)
- 2025線粒體醫(yī)學(xué)行業(yè)發(fā)展現(xiàn)狀與未來趨勢白皮書
- 靜壓機(jī)工程樁吊裝專項(xiàng)方案(2025版)
評(píng)論
0/150
提交評(píng)論