廣西柳州市名校2026屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題含解析_第1頁
廣西柳州市名校2026屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題含解析_第2頁
廣西柳州市名校2026屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題含解析_第3頁
廣西柳州市名校2026屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題含解析_第4頁
廣西柳州市名校2026屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西柳州市名校2026屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,為了測量A,B處島嶼的距離,小張在D處觀測,測得A,B分別在D處的北偏西、北偏東方向,再往正東方向行駛10海里至C處,觀測B在C處的正北方向,A在C處的北偏西方向,則A,B兩處島嶼間的距離為()海里.A. B.C. D.102.在數(shù)列中,,則此數(shù)列最大項的值是()A.102 B.C. D.1083.雙曲線的焦點到漸近線的距離為()A. B.2C. D.4.已知拋物線過點,則拋物線的焦點坐標為()A. B.C. D.5.已知條件,條件表示焦點在x軸上的橢圓,則p是q的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既非充分也非必要條件6.已知橢圓的一個焦點坐標為,則的值為()A. B.C. D.7.已知等比數(shù)列中,,,則首項()A. B.C. D.08.若執(zhí)行如圖所示的程序框圖,則輸出S的值是()A.18 B.78C.6 D.509.若直線與平行,則m的值為()A.-2 B.-1或-2C.1或-2 D.110.已知圓與圓外切,則()A. B.C. D.11.已知函數(shù)f(x)的定義域為[-1,5],其部分自變量與函數(shù)值的對應(yīng)情況如下表:x-10245f(x)312.513f(x)的導(dǎo)函數(shù)的圖象如圖所示.給出下列四個結(jié)論:①f(x)在區(qū)間[-1,0]上單調(diào)遞增;②f(x)有2個極大值點;③f(x)的值域為[1,3];④如果x∈[t,5]時,f(x)的最小值是1,那么t的最大值為4其中,所有正確結(jié)論的序號是()A.③ B.①④C.②③ D.③④12.數(shù)列滿足,則數(shù)列的前n項和為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.中國古代《易經(jīng)》一書中記載,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩計數(shù)”,如圖,一位古人在從右到左依次排列的紅繩子上打結(jié),滿三進一,用來記錄每年進的錢數(shù).由圖可得,這位古人一年的收入的錢數(shù)為___________.14.若數(shù)列滿足,則稱為“追夢數(shù)列”.已知數(shù)列為“追夢數(shù)列”,且,則數(shù)列的通項公式__________.15.已知數(shù)列的前的前n項和為,數(shù)列的的前n項和為,則滿足的最小n的值為______16.直線被圓所截得的弦中,最短弦所在直線的一般方程是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為增強市民的環(huán)境保護意識,某市面向全市征召若干名宣傳志愿者,成立環(huán)境保護宣傳小組,現(xiàn)把該小組的成員按年齡分成、、、、這組,得到的頻率分布直方圖如圖所示,已知年齡在內(nèi)的人數(shù)為.(1)若用分層抽樣的方法從年齡在、、內(nèi)的志愿者中抽取名參加某社區(qū)的宣傳活動,再從這名志愿者中隨機抽取名志愿者做環(huán)境保護知識宣講,求這名環(huán)境保護知識宣講志愿者中至少有名年齡在內(nèi)的概率;(2)在(1)的條件下,記抽取的名志愿者分別為甲、乙,該社區(qū)為了感謝甲、乙作為環(huán)境保護知識宣講的志愿者,給甲、乙各隨機派發(fā)價值元、元、元的紀念品一件,求甲的紀念品不比乙的紀念品價值高的概率.18.(12分)如圖①,在梯形PABC中,,與均為等腰直角三角形,,,D,E分別為PA,PC的中點.將沿DE折起,使點P到點的位置(如圖②),G為線段的中點.在圖②中解決以下兩個問題.(1)求證:平面平面;(2)若二面角為120°時,求CG與平面所成角的正弦值.19.(12分)如圖,三棱錐中,,,,,,點是PA的中點,點D是AC的中點,點N在PB上,且.(1)證明:平面CMN;(2)求平面MNC與平面ABC所成角的余弦值.20.(12分)已知點,圓.(1)若直線l過點M,且被圓C截得的弦長為,求直線l的方程;(2)設(shè)O為坐標原點,點N在圓C上運動,線段的中點為P,求點P的軌跡方程.21.(12分)已知動圓過定點,且與直線相切.(1)求動圓圓心的軌跡的方程;(2)直線過點與曲線相交于兩點,問:在軸上是否存在定點,使?若存在,求點坐標,若不存在,請說明理由.22.(10分)某種機械設(shè)備隨著使用年限的增加,它的使用功能逐漸減退,使用價值逐年減少,通常把它使用價值逐年減少的“量”換算成費用,稱之為“失效費”.某種機械設(shè)備的使用年限(單位:年)與失效費(單位:萬元)的統(tǒng)計數(shù)據(jù)如下表所示:使用年限(單位:年)1234567失效費(單位:萬元)2.903.303.604.404.805.205.90(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合與的關(guān)系.請用相關(guān)系數(shù)加以說明;(精確到0.01)(2)求出關(guān)于的線性回歸方程,并估算該種機械設(shè)備使用8年的失效費參考公式:相關(guān)系數(shù)線性回歸方程中斜率和截距最小二乘估計計算公式:,參考數(shù)據(jù):,,

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分別在和中,求得的長度,再在中,利用余弦定理,即可求解.【詳解】如圖所示,可得,所以,在中,可得,在直角中,因為,所以,在中,由余弦定理可得,所以.故選:C.2、D【解析】將將看作一個二次函數(shù),利用二次函數(shù)的性質(zhì)求解.【詳解】將看作一個二次函數(shù),其對稱軸為,開口向下,因為,所以當時,取得最大值,故選:D3、A【解析】根據(jù)點到直線距離公式進行求解即可.【詳解】由雙曲線的標準方程可知:,該雙曲線的焦點坐標為:,雙曲線的漸近線方程為:,所以焦點到漸近線的距離為:,故選:A4、D【解析】把點代入拋物線方程求出,再化成標準方程可得解.【詳解】因為拋物線過點,所以,所以拋物線方程為,方程化成標準方程為,故拋物線的焦點坐標為.故選:D.5、A【解析】根據(jù)條件,求得a的范圍,根據(jù)充分、必要條件的定義,即可得答案.【詳解】因為條件表示焦點在x軸上的橢圓,所以,解得或,所以條件是條件q:或的充分不必要條件.故選:A6、B【解析】根據(jù)題意得到得到答案.【詳解】橢圓焦點在軸上,且,故.故選:B.7、B【解析】設(shè)等比數(shù)列的公比為q,根據(jù)等比數(shù)列的通項公式,列出方程組,即可求得,進而可求得答案.【詳解】設(shè)等比數(shù)列公比為q,則,解得,所以.故選:B8、A【解析】根據(jù)框圖逐項計算后可得正確的選項.【詳解】第一次循環(huán)前,;第二次循環(huán)前,;第三次循環(huán)前,;第四次循環(huán)前,;第五次循環(huán)前,此時滿足條件,循環(huán)結(jié)束,輸出S的值是18故選:A9、C【解析】利用兩直線平行的判定有,即可求參數(shù)值.【詳解】由題設(shè),,可得或.經(jīng)驗證不重合,滿足題意,故選:C.10、D【解析】根據(jù)兩圓外切關(guān)系,圓心距離等于半徑的和列方程求參數(shù).【詳解】由題設(shè),兩圓圓心分別為、,半徑分別為1、r,∴由外切關(guān)系知:,可得.故選:D.11、D【解析】直接利用函數(shù)的導(dǎo)函數(shù)的圖像,進一步畫出函數(shù)的圖像,進一步利用函數(shù)的性質(zhì)的應(yīng)用求出函數(shù)的單調(diào)區(qū)間,函數(shù)的極值和端點值可得結(jié)論【詳解】解:由f(x)的導(dǎo)函數(shù)的圖像,畫出的圖像,如圖所示,對于①,在區(qū)間上單調(diào)遞減,所以①錯誤,對于②,有1個極大值點,2個極小值點,所以②錯誤,對于③,根據(jù)函數(shù)的極值和端點值可知的值域為,所以③正確,對于④,如果x∈[t,5]時,由圖像可知,當f(x)的最小值是1時,t的最大值為4,所以④正確,故選:D12、D【解析】利用等差數(shù)列的前n項和公式得到,進而得到,利用裂項相消法求和.【詳解】依題意得:,,,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、25【解析】將原問題轉(zhuǎn)化為三進制計算,即可求解【詳解】解:由題意可得,從左到右的數(shù)字依次為221,即古人一年的收入的錢數(shù)為故答案為:14、##【解析】根據(jù)題意,由“追夢數(shù)列”的定義可得“追夢數(shù)列”是公比為的等比數(shù)列,進而可得若數(shù)列為“追夢數(shù)列”,則為公比為3的等比數(shù)列,進而由等比數(shù)列的通項公式可得答案【詳解】根據(jù)題意,“追夢數(shù)列”滿足,即,則數(shù)列是公比為的等比數(shù)列.若數(shù)列為“追夢數(shù)列”,則.故答案為:.15、9【解析】由數(shù)列的前項和為,則當時,,所以,所以數(shù)列的前和為,當時,,當時,,所以滿足的最小的值為.點睛:本題主要考查了等差數(shù)列與等比數(shù)列的綜合應(yīng)用問題,其中解答中涉及到數(shù)列的通項與的關(guān)系,推導(dǎo)數(shù)列的通項公式,以及等差、等比數(shù)列的前項和公式的應(yīng)用,熟記等差、等比數(shù)列的通項公式和前項和公式是解答的關(guān)鍵,著重考查了學(xué)生的推理與運算能力.16、【解析】先求出直線所過的定點,當該定點為弦的中點時弦長最短,利用點斜式求出直線方程,整理成一般式即可.【詳解】即,令,解得即直線過定點圓的圓心為,半徑為,最短弦所在直線的方程為整理得最短弦所在直線的一般方程是故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)將名志愿者進行編號,列舉出所有的基本事件,并確定所求事件所包含的基本事件數(shù),利用古典概型的概率公式可求得所求事件的概率;(2)列舉出甲、乙獲得紀念品價值的所有情況,并確定所求事件所包含的情況,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:因為志愿者年齡在、、內(nèi)的頻率分別為、、,所以用分層抽樣的方法抽取的名志愿者年齡在、、內(nèi)的人數(shù)分別為、、.記年齡在內(nèi)的名志愿者分別記為、、,年齡在的名志愿者分別記為、,年齡在內(nèi)的名志愿者記為,則從中抽取名志愿者的情況有、、、、、、、、、、、、、、,共種可能;而至少有名志愿者的年齡在內(nèi)的情況有、、、、、、、、,共種可能.所以至少有名志愿者的年齡在內(nèi)的概率為.【小問2詳解】解:甲、乙獲得紀念品價值的情況有、、、、、、、、,共種可能;而甲的紀念品不比乙的紀念品價值高的情況有、、、、、,共種可能.故甲的紀念品不比乙的紀念品價值高的概率為.18、(1)證明見解析(2)【解析】(1)通過兩個線面平行即可證明面面平行(2)以為坐標原點建立直角坐標系,通過空間向量的方法計算線面角的正弦值【小問1詳解】如上圖所示,在中,因為D,E分別為PA,PC的中點,所以,因為平面,平面,所以平面,連接,交于點,連接,因為與均為等腰直角三角形,,所以,,所以,且,則四邊形是平行四邊形,所以是中點,且G為線段的中點,所以中,,因為平面,平面,所以平面,又因為平面,,所以平面平面【小問2詳解】因為,平面,,所以平面,所以可以以為坐標原點,建立如上圖所示的直角坐標系,此時,,,,因為G為線段的中點,所以,所以,,,設(shè)平面的法向量為,則有,即,得其中一個法向量,,所以CG與平面所成角的正弦值為19、(1)證明見解析(2)【解析】建立如圖所示空間直角坐標系,得到相關(guān)點和相關(guān)向量的坐標,(1)求出平面的法向量,利用證明即可;(2)由(1)知平面的法向量,再求平面的法向量,利用向量的夾角公式即可求解.【小問1詳解】證明:三棱錐中,,,∴分別以,,,,軸建立如圖所示空間直角坐標系∵,,點M是PA的中點,點D是AC的中點,點N在PB上且∴,,,,,設(shè)平面的法向量,,,,由得令得∴∵∴又平面∴平面;【小問2詳解】,,∴平面∴為平面的法向量則與的夾角的補角是平面與平面所成二面角的平面角.∴平面與平面所成角的余弦值為.20、(1)或(2)【解析】(1)由直線被圓C截得的弦長為,求得圓心到直線的距離為,分直線的斜率不存在和斜率存在兩種情況討論,結(jié)合點到直線的距離公式,列出方程,即可求解.(2)設(shè)點,,根據(jù)線段的中點為,求得,結(jié)合在圓上,代入即可求解.【小問1詳解】解:由題意,圓,可得圓心,半徑,因為直線被圓C截得的弦長為,則圓心到直線的距離為,當直線的斜率不存在時,此時直線的方程為,滿足題意;當直線的斜率存在時,設(shè)直線的方程為,即,則,解得,即,綜上可得,所求直線的方程為或.【小問2詳解】解:設(shè)點,因為點,線段的中點為,可得,解得,又因為在圓上,可得,即,即點的軌跡方程為.21、(1);(2)存在,.【解析】(1)利用兩點間的距離公式和直線與圓相切的性質(zhì)即可得出;(2)假設(shè)存在點,滿足題設(shè)條件,設(shè)直線的方程,根據(jù)韋達定理即可求出點的坐標【小問1詳解】設(shè)動圓的圓心,依題意:化簡得:,即為動圓的圓心的軌跡的方程【小問2詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論