版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
青島三中2026屆數(shù)學(xué)高一上期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線與圓相切,則的值為()A. B.C. D.2.若直線與直線垂直,則()A.1 B.2C. D.3.設(shè)非零向量、、滿足,,則向量、的夾角()A. B.C. D.4.已知函數(shù),的圖象如圖,若,,且,則()A.0 B.1C. D.5.已知偶函數(shù)在上單調(diào)遞增,則對實數(shù)、,“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.函數(shù)的大致圖像是()A. B.C. D.7.為了得到函數(shù)的圖象,只需將函數(shù)的圖象上所有的點()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位8.函數(shù)的零點個數(shù)為()A. B.C. D.9.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示,則函數(shù)的解析式為()A.y=2sin B.y=C.y=2sin D.y=2sin10.已知扇形的周長是6,面積是2,則扇形的圓心角的弧度數(shù)α是()A.1 B.4C.1或4 D.2或4二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若有解,則m的取值范圍是______12.若,則________.13.函數(shù)滿足,且在區(qū)間上,則的值為____14.圓的圓心坐標(biāo)是__________15.已知函數(shù)是偶函數(shù),則實數(shù)的值是__________16.若不等式在上恒成立,則實數(shù)a的取值范圍為____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)化簡;(2)若,求的值;(3)解關(guān)于的不等式:.18.已知定義在上的奇函數(shù)滿足:①;②對任意的均有;③對任意的,,均有.(1)求的值;(2)證明在上單調(diào)遞增;(3)是否存在實數(shù),使得對任意的恒成立?若存在,求出的取值范圍;若不存在,請說明理由.19.已知函數(shù)(1)求函數(shù)的最小正周期;(2)將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,若關(guān)于的方程在上有2個不等的實數(shù)解,求實數(shù)的取值范圍20.已知函數(shù)(1)若是定義在上的偶函數(shù),求實數(shù)的值;(2)在(1)條件下,若,求函數(shù)的零點21.已知函數(shù)(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)將函數(shù)的圖像向左平移單位長度,再將所得圖像上各點的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,得到函數(shù)的圖像,求在上的值域
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由圓心到直線的距離等于半徑可得【詳解】由題意圓標(biāo)準(zhǔn)方程為,圓心坐標(biāo)為,半徑為1,所以,解得故選:D2、B【解析】分析直線方程可知,這兩條直線垂直,斜率之積為-1.【詳解】由題意可知,即故選:B.3、B【解析】根據(jù)已知條件,應(yīng)用向量數(shù)量積的運算律可得,由得,即可求出向量、的夾角.【詳解】由題意,,即,∵,∴,則,又,∴.故選:B4、A【解析】根據(jù)圖象求得函數(shù)解析式,再由,,且,得到的圖象關(guān)于對稱求解.【詳解】由圖象知:,則,,所以,因在函數(shù)圖象上,所以,則,解得,因為,則,所以,因為,,且,所以的圖象關(guān)于對稱,所以,故選:A5、C【解析】直接利用充分條件和必要條件的定義判斷.【詳解】因為偶函數(shù)在上單調(diào)遞增,若,則,而等價于,故充分必要;故選:C6、D【解析】由題可得定義域為,排除A,C;又由在上單增,所以選D.7、A【解析】化簡函數(shù)的解析式,根據(jù)函數(shù)圖象變換的知識確定正確選項.【詳解】,將函數(shù)的圖象上所有的點向左平移個單位,得到.故選:A8、B【解析】當(dāng)時,令,故,符合;當(dāng)時,令,故,符合,所以的零點有2個,選B.9、C【解析】先從圖象中看出A,再求出最小正周期,求出ω,代入特殊值后結(jié)合φ范圍求出φ的值,得到答案.【詳解】由圖象可知A=2,因為-==,所以T=,ω=2.當(dāng)x=-時,2sin=2,即sin=1,又|φ|<,解得φ=.故函數(shù)的解析式為y=2sin.故選:C10、C【解析】根據(jù)扇形的弧長公式和面積公式,列出方程組,求得的值,即可求解.【詳解】設(shè)扇形所在圓的半徑為,由扇形的周長是6,面積是2,可得,解得或,又由弧長公式,可得,即,當(dāng)時,可得;當(dāng)時,可得,故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用函數(shù)的值域,轉(zhuǎn)化方程的實數(shù)解,列出不等式求解即可.【詳解】函數(shù),若有解,就是關(guān)于的方程在上有解;可得:或,解得:或可得.故答案為.【點睛】本題考查函數(shù)與方程的應(yīng)用,考查轉(zhuǎn)化思想有解計算能力.12、【解析】利用三角函數(shù)的誘導(dǎo)公式,化簡得到原式,代入即可求解.【詳解】因為,由故答案為:13、【解析】分析:先根據(jù)函數(shù)周期將自變量轉(zhuǎn)化到已知區(qū)間,代入對應(yīng)函數(shù)解析式求值,再代入對應(yīng)函數(shù)解析式求結(jié)果.詳解:由得函數(shù)的周期為4,所以因此點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)的形式時,應(yīng)從內(nèi)到外依次求值.(2)求某條件下自變量的值,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記代入檢驗,看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.14、【解析】根據(jù)圓的標(biāo)準(zhǔn)方程,即可求得圓心坐標(biāo).【詳解】因為圓所以圓心坐標(biāo)為故答案為:【點睛】本題考查了圓的標(biāo)準(zhǔn)方程與圓心的關(guān)系,屬于基礎(chǔ)題.15、1【解析】函數(shù)是偶函數(shù),,即,解得,故答案為.【方法點睛】本題主要考查函數(shù)的奇偶性,屬于中檔題.已知函數(shù)的奇偶性求參數(shù),主要方法有兩個,一是利用:(1)奇函數(shù)由恒成立求解,(2)偶函數(shù)由恒成立求解;二是利用特殊值:奇函數(shù)一般由求解,偶函數(shù)一般由求解,用特殊法求解參數(shù)后,一定要注意驗證奇偶性16、【解析】把不等式變形為,分和情況討論,數(shù)形結(jié)合求出答案.【詳解】解:變形為:,即在上恒成立令,若,此時在上單調(diào)遞減,,而當(dāng)時,,顯然不合題意;當(dāng)時,畫出兩個函數(shù)的圖象,要想滿足在上恒成立,只需,即,解得:綜上:實數(shù)a的取值范圍是.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】(1)運用誘導(dǎo)公式和同角三角函數(shù)關(guān)系進(jìn)行化簡,即可得到化簡結(jié)果;(2)結(jié)合(1)得到的結(jié)果,將問題轉(zhuǎn)化為齊次式進(jìn)行求解,即可計算出結(jié)果;(3)結(jié)合(1)得到的結(jié)果,將其轉(zhuǎn)化為不等式即可求出結(jié)果.【詳解】(1)因為,,,,,,,.(2)由(1)可知,=11(3)因為,可轉(zhuǎn)化為整理可得,則,解得,故不等式的解集為.【點睛】關(guān)鍵點點睛:解答第一問時關(guān)鍵是需要熟練掌握誘導(dǎo)公式,對其進(jìn)行化簡,并能結(jié)合同角三角函數(shù)關(guān)系計算結(jié)果,解答第二問時可以將其轉(zhuǎn)化為齊次式,即可計算出結(jié)果.18、(1)0;(2)詳見解析;(3)存在,.【解析】(1)利用賦值法即求;(2)利用單調(diào)性的定義,由題可得,結(jié)合條件可得,即證;(3)利用賦值法可求,結(jié)合函數(shù)的單調(diào)性可把問題轉(zhuǎn)化為,是否存在實數(shù),使得或在恒成立,然后利用參變分離法即求.【小問1詳解】∵對任意的,,均有,令,則,∴;【小問2詳解】,且,則又,對任意的均有,∴,∴∴函數(shù)在上單調(diào)遞增.【小問3詳解】∵函數(shù)為奇函數(shù)且在上單調(diào)遞增,∴函數(shù)在上單調(diào)遞增,令,可得,令,可得,又,∴,又函數(shù)在上單調(diào)遞增,在上單調(diào)遞增,∴由,可得或,即是否存在實數(shù),使得或?qū)θ我獾暮愠闪?,令,則,則對于恒成立等價于在恒成立,即在恒成立,又當(dāng)時,,故不存在實數(shù),使得恒成立,對于對任意的恒成立,等價于在恒成立,由,可得在恒成立,又,在上單調(diào)遞減,∴,綜上可得,存在使得對任意的恒成立.【點睛】關(guān)鍵點點睛:本題第二問的關(guān)鍵是配湊,然后利用條件可證;第三問的關(guān)鍵是轉(zhuǎn)化為否存在實數(shù),使得或在恒成立,再利用參變分離法解決.19、(1)(2)【解析】(1)利用三角恒等變換化簡,由周期公式求解即可;(2)先求出的解析式,再把所求轉(zhuǎn)化為方程在上有2個不等的實數(shù)解,令,根據(jù)圖象即可求得結(jié)論【小問1詳解】解:,即,所以函數(shù)的最小正周期為【小問2詳解】解:由已知可得,方程在上有2個不等的實數(shù)解,即方程在上有2個不等的實數(shù)解令,因為,,,,,令,則,,作出函數(shù)圖象如下圖所示:要使方程在上有2個不等的實數(shù)解,則20、(1);(2)有兩個零點,分別為和【解析】(1)由函數(shù)為偶函數(shù)得即可求實數(shù)的值;(2),計算令,則即可.試題解析:(1)解:∵是定義在上的偶函數(shù).∴,即故.經(jīng)檢驗滿足題意(2)依題意.則由,得,令,則解得.即.∴函數(shù)有兩個零點,分別為和.21、(1)最小正周期為,單調(diào)遞減區(qū)間為,;(2).【解析】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年前端框架開發(fā)應(yīng)用精講課程
- 2026年咖啡飲品研發(fā)創(chuàng)新實戰(zhàn)課程
- 人身保險經(jīng)紀(jì)代理業(yè)務(wù)管理手冊
- 2026浙江杭州市西溪中學(xué)教師招聘備考題庫及答案詳解參考
- 2026年勞動用工合規(guī)風(fēng)險防控課程
- 基礎(chǔ)化工行業(yè)專題:硫磺向全球資源博弈下的新周期演進(jìn)
- 超星美學(xué)課件
- 職業(yè)噪聲工人心血管康復(fù)訓(xùn)練方案優(yōu)化-1
- 職業(yè)噪聲與心血管疾病患者康復(fù)效果評價
- 四川省攀枝花市第十二中學(xué)2021-2021學(xué)年高一政治3月調(diào)研檢測試題
- 工程項目居間合同協(xié)議書范本
- 2025年福建省廈門城市職業(yè)學(xué)院(廈門開放大學(xué))簡化程序公開招聘事業(yè)單位專業(yè)技術(shù)崗位人員(2025年3月)考試筆試參考題庫附答案解析
- 2025年及未來5年中國對叔丁基苯甲酸市場供需現(xiàn)狀及投資戰(zhàn)略研究報告
- 造價管理限額設(shè)計
- 機房空調(diào)安裝協(xié)議書
- 人文知識競賽重點題庫及答案
- 2025年小龍蝦養(yǎng)殖可行性分析報告
- 排水管網(wǎng)排查與檢測完整技術(shù)標(biāo)方案
- 《軌道交通工程拱蓋法技術(shù)規(guī)范》
- 2025年國家電網(wǎng)電工類能力招聘考試筆試試題(含答案)
- 瀝青路面監(jiān)理規(guī)劃
評論
0/150
提交評論