版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽宿州市汴北三校聯(lián)考2026屆高一上數(shù)學期末學業(yè)水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知點P3,-4是角α的終邊上一點,則sinA.-75C.15 D.2.已知冪函數(shù)的圖像過點,則下列關于說法正確的是()A.奇函數(shù) B.偶函數(shù)C.定義域為 D.在單調(diào)遞減3.集合用列舉法表示是()A. B.C. D.4.已知扇形的圓心角為,面積為8,則該扇形的周長為()A.12 B.10C. D.5.如圖所示,在正方體ABCD—A1B1C1D1中,M、N分別是BB1、BC的中點.則圖中陰影部分在平面ADD1A1上的正投影為()A. B.C. D.6.下列函數(shù)中,在上單調(diào)遞增的是()A. B.C. D.7.圓與直線相交所得弦長為()A.1 B.C.2 D.28.為了得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平行移動個單位 B.向左平行移動個單位C.向右平行移動個單位 D.向右平行移動個單位9.已知定義域為R的偶函數(shù)在上是減函數(shù),且,則不等式的解集為()A. B.C. D.10.已知角的終邊經(jīng)過點,則().A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)(常數(shù)),對于任意兩個不同的、,當、時,均有(為常數(shù),)成立,如果滿足條件的最小正整數(shù)為,則實數(shù)的取值范圍是___________.12.tan22°+tan23°+tan22°tan23°=_______13.如圖,在直四棱柱中,當?shù)酌鍭BCD滿足條件___________時,有.(只需填寫一種正確條件即可)14.若一個集合是另一個集合的子集,則稱兩個集合構成“鯨吞”;對于集合,,若這兩個集合構成“鯨吞”,則的取值為____________15.為了得到函數(shù)的圖象,可以將函數(shù)的圖象向右平移_________個單位長度而得16.已知定義在上的函數(shù)滿足,且當時,.若對任意,恒成立,則實數(shù)的取值范圍是______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若函數(shù)的圖象關于直線x=對稱,且,求函數(shù)的單調(diào)遞增區(qū)間.(2)在(1)的條件下,當時,函數(shù)有且只有一個零點,求實數(shù)b的取值范圍.18.已知集合,記函數(shù)的定義域為集合B.(1)當a=1時,求A∪B;(2)若“x∈A”是“x∈B”的充分不必要條件,求實數(shù)a的取值范圍.19.已知函數(shù)的部分圖象如圖所示.(1)求的解析式;(2)把圖象上所有點的橫坐標縮小到原來的,再向左平移個單位長度,向下平移1個單位長度,得到的圖象,求的單調(diào)區(qū)間.20.(1)利用函數(shù)單調(diào)性定義證明:函數(shù)是減函數(shù);(2)已知當時,函數(shù)的圖象恒在軸的上方,求實數(shù)的取值范圍.21.如圖,四邊形中,,,,,、分別在、上,,現(xiàn)將四邊形沿折起,使平面平面()若,是否存在折疊后的線段上存在一點,且,使得平面?若存在,求出的值;若不存在,說明理由()求三棱錐的體積的最大值,并求此時點到平面的距離
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】利用三角函數(shù)的定義可求得結果.【詳解】由三角函數(shù)的定義可得sinα-故選:A.2、D【解析】設出冪函數(shù)的解析式,將所過點坐標代入,即可求出該函數(shù).再根據(jù)冪函數(shù)的性質的結論,選出正確選項.【詳解】設冪函數(shù)為,因為函數(shù)過點,所以,則,所以,該函數(shù)定義域為,則其既不是奇函數(shù)也不是偶函數(shù),且由可知,該冪函數(shù)在單調(diào)遞減.故選:D.3、D【解析】解不等式,結合列舉法可得結果.【詳解】.故選:D4、A【解析】利用已知條件求出扇形的半徑,即可得解周長【詳解】解:設扇形的半徑r,扇形OAB的圓心角為4弧度,弧長為:4r,其面積為8,可得4r×r=8,解得r=2扇形的周長:2+2+8=12故選:A5、A【解析】確定三角形三點在平面ADD1A1上的正投影,從而連接起來就是答案.【詳解】點M在平面ADD1A1上的正投影是的中點,點N在平面ADD1A1上的正投影是的中點,點D在平面ADD1A1上的正投影仍然是D,從而連接其三點,A選項為答案,故選:A6、B【解析】利用基本初等函數(shù)的單調(diào)性可得出合適的選項.【詳解】函數(shù)、、在上均為減函數(shù),函數(shù)在上為增函數(shù).故選:B.7、D【解析】利用垂徑定理可求弦長.【詳解】圓的圓心坐標為,半徑為,圓心到直線的距離為,故弦長為:,故選:D.8、B【解析】由函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結論【詳解】∵將函數(shù)y=sin(2x)的圖象向左平行移動個單位得到sin[2(x)]=,∴要得到函數(shù)y=sin2x的圖象,只需將函數(shù)y=sin(2x)的圖象向左平行移動個單位故選B【點睛】本題主要考查了函數(shù)y=Asin(ωx+φ)圖象變換規(guī)律的簡單應用,屬于基礎題9、A【解析】根據(jù)偶函數(shù)的性質可得在上是增函數(shù),且.由此將不等式轉化為來求解得不等式的解集.【詳解】因為偶函數(shù)在上是減函數(shù),所以在上是增函數(shù),由題意知:不等式等價于,即,即或,解得:或.故選:A【點睛】本小題主要考查函數(shù)的奇偶性以及單調(diào)性,考查對數(shù)不等式的解法,屬于中檔題.10、A【解析】根據(jù)三角函數(shù)的概念,,可得結果.【詳解】因為角終邊經(jīng)過點所以故選:A【點睛】本題主要考查角終邊過一點正切值的計算,屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分析可知對任意的、且恒成立,且對任意的、且有解,進而可得出關于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.詳解】,因為,由可得,由題意可得對任意的、且恒成立,且對任意的、且有解,即,即恒成立,或有解,因為、且,則,若恒成立,則,解得;若或有解,則或,解得或;因此,實數(shù)的取值范圍是.故答案為:.12、1【解析】解:因為tan22°+tan23°+tan22°tan23°=tan(22°+23°)(1-tan22°tan23°)+tan22°tan23°=tan45°=113、(答案不唯一)【解析】直四棱柱,是在上底面的投影,當時,可得,當然底面ABCD滿足的條件也就能寫出來了.【詳解】根據(jù)直四棱柱可得:∥,且,所以四邊形是矩形,所以∥,同理可證:∥,當時,可得:,且底面,而底面,所以,而,從而平面,因為平面,所以,所以當滿足題意.故答案為:.14、0【解析】根據(jù)題中定義,結合子集的定義進行求解即可.【詳解】當時,,顯然,符合題意;當時,顯然集合中元素是兩個互為相反數(shù)的實數(shù),而集合中的兩個元素不互為相反數(shù),所以集合、之間不存在子集關系,不符合題意,故答案為:15、(答案不唯一);【解析】由于,再根據(jù)平移求解即可.【詳解】解:由于,故將函數(shù)的圖象向右平移個單位長度可得函數(shù)圖像.故答案為:16、【解析】根據(jù)題意求出函數(shù)和圖像,畫出圖像根據(jù)圖像解題即可.【詳解】因為滿足,即;又由,可得,因為當時,所以當時,,所以,即;所以當時,,所以,即;根據(jù)解析式畫出函數(shù)部分圖像如下所示;因為對任意,恒成立,根據(jù)圖像當時,函數(shù)與圖像交于點,即的橫坐標即為的最大值才能符合題意,所以,解得,所以實數(shù)的取值范圍是:.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)先求得函數(shù)的解析式,再整體代入法去求函數(shù)單調(diào)遞增區(qū)間即可;(2)依據(jù)函數(shù)的單調(diào)性及零點個數(shù)列不等式組即可求得實數(shù)b的取值范圍.【小問1詳解】由,可得又函數(shù)的圖象關于直線x=對稱,則,則故由,可得則函數(shù)的單調(diào)遞增區(qū)間為【小問2詳解】由(1)可知當時,,由得,由得則函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,由函數(shù)有且只有一個零點,可得或,解得或18、(1);(2).【解析】(1)化簡集合A,B,根據(jù)集合的并集運算求解;(2)由充分必要條件可轉化為,建立不等式求解即可.【小問1詳解】當則定義域又,所以【小問2詳解】因為“x∈A”是“x∈B”的充分不必要條件,所以又所以僅需即19、(1)(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【解析】(1)根據(jù)最值求的值;根據(jù)周期求的值;把點代入求的值.(2)首先根據(jù)圖象的變換求出的解析式,然后利用整體代入的方法即可求出的單調(diào)區(qū)間.【小問1詳解】由圖可知,所以,.又,所以,因為,所以.因為,所以,即,又|,得,所以.【小問2詳解】由題意得,由,得,故的單調(diào)遞減區(qū)間為,由,得,故的單調(diào)遞增區(qū)間為.20、(1)略;(2)【解析】(1)根據(jù)單調(diào)性的定義進行證明即可得到結論;(2)將問題轉化為在上恒成立求解,即在上恒成立,然后利用換元法求出函數(shù)的最小值即可得到所求范圍【詳解】(1)證明:設,則,∵,∴,∴,∴,∴函數(shù)是減函數(shù)(2)由題意可得在上恒成立,∴在上恒成立令,因為,所以,∴在上恒成立令,,則由(1)可得上單調(diào)遞減,∴,∴∴實數(shù)的取值范圍為【點睛】(1)用定義證明函數(shù)單調(diào)性的步驟為:取值、作差、變形、定號、結論,其中變形是解題的關鍵(2)解決恒成立問題時,分離參數(shù)法是常用的方法,通過分離參數(shù),轉化為求具體函數(shù)的最值的問題處理21、(1)答案見解析;(2)答案見解析.【解析】(1)存在,使得平面,此時,即,利用幾何關系可知四邊形為平行四邊形,則,利用線面平行的判斷定理可知平面成立(2)由題意可得三棱錐的體積,由均
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- CCAA - 環(huán)境管理體系基礎摸底考試一答案及解析 - 詳解版(65題)
- 福建省泉州市2026屆高中畢業(yè)班質量監(jiān)測 (二)生物學試題(含答案)
- 養(yǎng)老院入住老人福利待遇保障制度
- 企業(yè)員工培訓與職業(yè)發(fā)展目標路徑素質制度
- 老年終末期患者疼痛爆發(fā)痛的護理干預策略
- 老年終末期患者家庭會議的護士溝通適配策略
- 激勵技術人員創(chuàng)新獎勵制度實施細則
- 2025年昭平縣職業(yè)教育中心招聘考試真題
- 天然砂石骨料生產(chǎn)工安全知識競賽水平考核試卷含答案
- 我國上市公司獨立董事與監(jiān)事會關系的深度剖析
- 20222023銀行招聘考試題庫1000題第4372期含答案解析
- 2024年人教版九年級上冊語文期末復習名著打卡《水滸傳》
- GB/T 17727-2024船用法蘭非金屬墊片
- 低壓線路改造項目可行性研究報告
- JJF(機械) 1064-2021 運動場地材料沖擊吸收和垂直變形試驗機校準規(guī)范
- PPAP全尺寸檢測報告
- 化工工藝安全與風險評估
- 起重機焊接結構件制造工藝規(guī)程
- ydt3033 2016站用相變蓄能設備
- 研學旅行概論-第七章-研學旅行課程建設
- RB/T 089-2022綠色供應鏈管理體系要求及使用指南
評論
0/150
提交評論