黑龍江省佳木斯市第一中學2026屆數學高二上期末統(tǒng)考試題含解析_第1頁
黑龍江省佳木斯市第一中學2026屆數學高二上期末統(tǒng)考試題含解析_第2頁
黑龍江省佳木斯市第一中學2026屆數學高二上期末統(tǒng)考試題含解析_第3頁
黑龍江省佳木斯市第一中學2026屆數學高二上期末統(tǒng)考試題含解析_第4頁
黑龍江省佳木斯市第一中學2026屆數學高二上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省佳木斯市第一中學2026屆數學高二上期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數列x,,,…的第四項為()A.5 B.6C.7 D.82.已知f(x)為R上的可導函數,其導函數為,且對于任意的x∈R,均有,則()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)3.已知數列是等差數列,為數列的前項和,,,則()A.54 B.71C.81 D.804.已知定義在上的函數滿足:,且,則的解集為()A. B.C. D.5.宋元時期數學名著《算學啟蒙》中有關于“松竹并生"的問題,松長三尺,竹長一尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的,分別為3,1,則輸出的等于A.5 B.4C.3 D.26.已知是拋物線的焦點,為拋物線上的動點,且的坐標為,則的最小值是A. B.C. D.7.函數的定義域為開區(qū)間,導函數在內的圖像如圖所示,則函數在開區(qū)間內的極大值點有()A.1個 B.2個C.3個 D.4個8.從直線上動點作圓的兩條切線,切點分別為、,則最大時,四邊形(為坐標原點)面積是()A. B.C. D.9.若數列是等差數列,其前n項和為,若,且,則等于()A. B.C. D.10.函數在點處的切線方程的斜率是()A. B.C. D.11.某中學的“希望工程”募捐小組暑假期間走上街頭進行了一次募捐活動,共收到捐款1200元.他們第1天只得到10元,之后采取了積極措施,從第2天起,每一天收到的捐款都比前一天多10元.這次募捐活動一共進行的天數為()A.13 B.14C.15 D.1612.已知遞增等比數列的前n項和為,,且,則與的關系是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正四棱錐底面邊長和高均為分別是其所在棱的中點,則棱臺的體積為___________.14.經過點,圓心在x軸正半軸上,半徑為5的圓的方程為________15.已知空間向量,,則向量在向量上的投影向量的坐標是__________16.已知直線與之間的距離為,則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的圓心在直線上,且圓與軸相切于點(1)求圓的標準方程;(2)若直線與圓相交于,兩點,求的面積18.(12分)設,分別是橢圓()的左、右焦點,E的離心率為.短軸長為2.(1)求橢圓E的方程:(2)過點的直線l交橢圓E于A,B兩點,是否存在實數t,使得恒成立?若存在,求出t的值;若不存在,說明理由.19.(12分)已知直線:,直線:.(1)若,求與的距離;(2)若,求與的交點的坐標.20.(12分)已知拋物線C:,過點且斜率為k的直線與拋物線C相交于P,Q兩點.(1)設點B在x軸上,分別記直線PB,QB的斜率為.若,求點B的坐標;(2)過拋物線C的焦點F作直線PQ的平行線與拋物線C相交于M,N兩點,求的值.21.(12分)已知等差數列滿足,(1)求數列的通項公式及前10項和;(2)等比數列滿足,,求和:22.(10分)如圖,點О是正四棱錐的底面中心,四邊形PQDO矩形,(1)點B到平面APQ的距離:(2)設E為棱PC上的點,且,若直線DE與平面APQ所成角的正弦值為,試求實數的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據等差數列的定義求出x,求出公差,即可求出第四項.【詳解】由題可知,等差數列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項為-1+(4-1)×2=5.故選:A.2、D【解析】通過構造函數法,結合導數確定正確答案.【詳解】構造函數,所以在上遞增,所以,即.故選:D3、C【解析】利用等差數列的前n項和公式求解.【詳解】∵是等差數列,,∴,得,∴.故選:C.4、A【解析】令,利用導數可判斷其單調性,從而可解不等式.【詳解】設,則,故為上的增函數,而可化為即,故即,所以不等式的解集為,故選:A.5、B【解析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結構計算并輸出變量S的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案【詳解】解:當n=1時,a=3,b=2,滿足進行循環(huán)的條件,當n=2時,a,b=4,滿足進行循環(huán)的條件,當n=3時,a,b=8,滿足進行循環(huán)的條件,當n=4時,a,b=16,不滿足進行循環(huán)的條件,故輸出的n值為4,故選:B【點睛】本題考查的知識點是程序框圖,當循環(huán)的次數不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答6、C【解析】由題意可得,拋物線的焦點,準線方程為過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角∴當最小時,最小,則當和拋物線相切時,最小設切點,由的導數為,則的斜率為.∴,則.∴,∴故選C點睛:本題主要考查拋物線的定義和幾何性質,與焦點、準線有關的問題一般情況下都與拋物線的定義有關,解決這類問題一定要注意點到焦點的距離與點到準線的距離的轉化,這樣可利用三角形相似,直角三角形中的銳角三角函數或是平行線段比例關系可求得距離弦長以及相關的最值等問題.7、B【解析】利用極值點的定義求解.【詳解】由導函數的圖象知:函數在內,與x軸有四個交點:第一個點處導數左正右負,第二個點處導數左負右正,第三個點處導數左正右正,第四個點處導數左正右負,所以函數在開區(qū)間內的極大值點有2個,故選:B8、B【解析】分析可知當時,最大,計算出、,進而可計算得出四邊形(為坐標原點)面積.【詳解】圓的圓心為坐標原點,連接、、,則,設,則,,則,當取最小值時,,此時,,,,故,此時,.故選:B.9、B【解析】由等差數列的通項公式和前項和公式求出的首項和公差,即可求出.【詳解】設等差數列的公差為,則解得:,所以.故選:B.10、D【解析】求解導函數,再由導數的幾何意義得切線的斜率.【詳解】求導得,由導數的幾何意義得,所以函數在處切線的斜率為.故選:D11、C【解析】由題意可得募捐構成了一個以10元為首項,以10元為公差的等差數列,設共募捐了天,然后建立關于的方程,求出即可【詳解】由題意可得,第一天募捐10元,第二天募捐20元,募捐構成了一個以10元為首項,以10元為公差的等差數列,根據題意,設共募捐了天,則,解得或(舍去),所以,故選:12、D【解析】設等比數列的公比為,由已知列式求得,再由等比數列的通項公式與前項和求解.【詳解】設等比數列的公比為,由,得,所以,又,所以,所以,,所以即故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分別計算,,作差得到答案.【詳解】分別是其所在棱的中點,則正四棱錐底面邊長和高均為,,,故.故答案為:.14、【解析】設圓方程為,代入原點計算得到答案.【詳解】設圓方程為經過點,代入圓方程則圓方程為故答案為【點睛】本題考查了圓方程的計算,設出圓方程是解題的關鍵.15、【解析】根據投影向量概念求解即可.【詳解】因為空間向量,,所以,,所以向量在向量上投影向量為:,故答案為:.16、或##或【解析】利用平行直線間距離公式構造方程求解即可.【詳解】方程可化為:,由平行直線間距離公式得:,解得:或.故答案為:或.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)4【解析】(1)由已知設圓心,再由相切求圓半徑從而得解.(2)求弦長,再求點到直線的距離,進而可得解.【小問1詳解】因為圓心在直線上,所以設圓心,又圓與軸相切于點,所以,即圓與軸相切,則圓的半徑,于是圓的方程為【小問2詳解】圓心到直線的距離,則,又到直線的距離為,所以.18、(1)(2)存在,【解析】(1)由條件列出,,的方程,解方程求出,,,由此可得橢圓E的方程:(2)當直線的斜率存在時,設直線的方程為,聯立直線的方程與橢圓方程化簡可得,設,,可得,,由此證明,再證明當直線的斜率不存在時也成立,由此確定存在實數t,使得恒成立【小問1詳解】由已知得,離心率,所以,故橢圓E的方程為.【小問2詳解】當直線l的斜率存在時,設,,,聯立方程組得,,所以,..,,所以.所以.當直線l的斜率不存在時,,聯立方程組,得,.,,所以.綜上,存在實數使得恒成立.【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯立,消去x(或y)建立一元二次方程,然后借助根與系數的關系,并結合題設條件建立有關參變量的等量關系(2)涉及到直線方程的設法時,務必考慮全面,不要忽略直線斜率為0或不存在等特殊情形.19、(1).(2).【解析】分析:(1)先根據求出k的值,再利用平行線間的距離公式求與的距離.(2)先根據求出k的值,再解方程組得與的交點的坐標.詳解:(1)若,則由,即,解得或.當時,直線:,直線:,兩直線重合,不符合,故舍去;當時,直線:,直線:,所以.(2)若,則由,得.所以兩直線方程為:,:,聯立方程組,解得,所以與的交點的坐標為.點睛:(1)本題主要考查直線的位置關系和距離的計算,意在考查學生對這些知識的掌握水平和計算能力.(2)直線與直線平行,則且兩直線不重合.直線與直線垂直,則.20、(1)(2)【解析】(1)直線的方程為,其中,聯立直線與拋物線方程,由韋達定理結合已知條件可求得點的坐標;(2)直線的方程為,利用傾斜角定義知,,聯立直線與拋物線方程,利用弦長公式求得,進而得解.小問1詳解】由題意,直線的方程為,其中.設,聯立,消去得..,,即.,即.,,∴點的坐標為.【小問2詳解】由題意,直線的方程為,其中,為傾斜角,則,設.聯立,消去得...21、(1),175(2)【解析】(1)由已知結合等差數列的通項公式先求出公差,然后結合通項公式及求和公式即可求解;(2)結合等比數列的性質先求出,然后結合等比數列性質及求和公式可求【小問1詳解】解:等差數列滿足,,所以,,;【小問2詳解】解:因為等比數列滿足,,所以或(舍去),由等比數列的性質可知,是以1為首項,4為公比的等比數列,所以,所以22、(1)(2)或【解析】(1)以三棱錐等體積法求點到面距離,思路簡單快捷.(2)由直線DE與平面APQ所成角的正弦值為,可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論