2026屆安徽省合肥市廬陽區(qū)第一中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2026屆安徽省合肥市廬陽區(qū)第一中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2026屆安徽省合肥市廬陽區(qū)第一中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2026屆安徽省合肥市廬陽區(qū)第一中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2026屆安徽省合肥市廬陽區(qū)第一中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆安徽省合肥市廬陽區(qū)第一中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則下列三個數(shù),,()A.都不大于-4 B.至少有一個不大于-4C.都不小于-4 D.至少有一個不小于-42.數(shù)列,,,,,中,有序?qū)崝?shù)對是()A. B.C. D.3.在平面直角坐標系中,線段的兩端點,分別在軸正半軸和軸正半軸上滑動,若圓上存在點是線段的中點,則線段長度的最小值為()A.4 B.6C.8 D.104.已知等比數(shù)列的前項和為,公比為,則()A. B.C. D.5.等差數(shù)列中,若,則()A.42 B.45C.48 D.516.第屆全運會于年月在陜西西安順利舉辦,其中水上項目在西安奧體中心游泳跳水館進行,為了應(yīng)對比賽,大會組委會將對泳池進行檢修,已知泳池深度為,其容積為,如果池底每平方米的維修費用為元,設(shè)入水處的較短池壁長度為,且據(jù)估計較短的池壁維修費用與池壁長度成正比,且比例系數(shù)為,較長的池壁維修費用滿足代數(shù)式,則當泳池的維修費用最低時值為()A. B.C. D.7.傾斜角為45°,在y軸上的截距為2022的直線方程是()A. B.C. D.8.如圖,我市某地一拱橋垂直軸截面是拋物線,已知水利人員在某個時刻測得水面寬,則此時刻拱橋的最高點到水面的距離為()A. B.C. D.9.已知在四棱錐中,平面,底面是邊長為4的正方形,,E為棱的中點,則直線與平面所成角的正弦值為()A. B.C. D.10.已知拋物線,過點作拋物線的兩條切線,點為切點.若的面積不大于,則的取值范圍是()A. B.C. D.11.點A是曲線上任意一點,則點A到直線的最小距離為()A. B.C. D.12.“”是“方程為雙曲線方程”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知正數(shù)滿足,則的最小值是__________.14.已知的展開式中項的系數(shù)是,則正整數(shù)______________.15.下列是某廠1~4月份用水量(單位:百噸)的一組數(shù)據(jù),由其散點圖可知,用水量與月份之間有較好的線性相關(guān)關(guān)系,其線性回歸方程是,則_______.月份1234用水量4.5432.516.已知點,,點P在x軸上,且,則點P的坐標為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若,求的最大值;(2)若,求證:有且只有一個零點.18.(12分)在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且(1)求證:平面;(2)求平面與平面夾角的余弦值19.(12分)“既要金山銀山,又要綠水青山”.濱江風景區(qū)在一個直徑為100米的半圓形花園中設(shè)計一條觀光線路(如圖所示).在點與圓弧上的一點(不同于A,B兩點)之間設(shè)計為直線段小路,在直線段小路的兩側(cè)(注意是兩側(cè))種植綠化帶;再從點到點設(shè)計為沿弧的弧形小路,在弧形小路的內(nèi)側(cè)(注意是一側(cè))種植綠化帶(注:小路及綠化帶的寬度忽略不計).(1)設(shè)(弧度),將綠化帶總長度表示為的函數(shù);(2)試確定的值,使得綠化帶總長度最大.(弧度公式:,其中為弧所對的圓心角)20.(12分)若函數(shù)在區(qū)間上的最大值為9,最小值為1.(1)求a,b的值;(2)若方程在上有兩個不同的解,求實數(shù)k的取值范圍.21.(12分)已知橢圓與直線相切,點G為橢圓上任意一點,,,且的最大值為3(1)求橢圓C的標準方程;(2)設(shè)直線與橢圓C交于不同兩點E,F(xiàn),點O為坐標原點,且,當?shù)拿娣e取最大值時,求的取值范圍22.(10分)如圖,在直三棱柱中,,,D為的中點(1)求證:平面;(2)求平面與平面的夾角的余弦值;(3)若E為的中點,求與所成的角

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用反證法設(shè),,都大于,結(jié)合基本不等式即可得出結(jié)論.【詳解】設(shè),,都大于,則,由于,故,利用基本不等式可得,當且僅當時等號成立,這與假設(shè)所得結(jié)論矛盾,故假設(shè)不成立,故下列三個數(shù),,至少有一個不大于,故選:B.2、A【解析】根據(jù)數(shù)列的概念,找到其中的規(guī)律即可求解.【詳解】由數(shù)列,,,,,可知,,,,,則,解得,故有序?qū)崝?shù)對是,故選:3、C【解析】首先求點的軌跡,將問題轉(zhuǎn)化為兩圓有交點,即根據(jù)兩圓的位置關(guān)系,求參數(shù)的取值范圍.【詳解】設(shè),,的中點為,則,故點的軌跡是以原點為圓心,為半徑的圓,問題轉(zhuǎn)化為圓與圓有交點,所以,,即,解得:,所以線段長度的最小值為.故選:C4、D【解析】利用等比數(shù)列的求和公式可求得的值.【詳解】由等比數(shù)列的求和公式可得,解得.故選:D.5、C【解析】結(jié)合等差數(shù)列的性質(zhì)求得正確答案.【詳解】依題意是等差數(shù)列,,.故選:C6、A【解析】根據(jù)題意得到泳池維修費用的的解析式,再利用導數(shù)求出最值即可【詳解】解:設(shè)泳池維修的總費用為元,則由題意得,則,令,解得,當時,;當時,,故當時,有最小值因此,當較短池壁為時,泳池的總維修費用最低故選A7、A【解析】根據(jù)直線斜率與傾斜角的關(guān)系,結(jié)合直線斜截式方程進行求解即可.【詳解】因為直線的傾斜角為45°,所以該直線的斜率為,又因為該直線在y軸上的截距為2022,所以該直線的方程為:,故選:A8、D【解析】代入計算即可.【詳解】設(shè)B點的坐標為,由拋物線方程得,則此時刻拱橋的最高點到水面的距離為2米.故選:D9、B【解析】建立空間直角坐標系,以向量法去求直線與平面所成角的正弦值即可.【詳解】平面,底面是邊長為4的正方形,則有,而,故平面,以A為原點,分別以AB、AD、AP所在直線為x軸、y軸、z軸建立空間直角坐標系如圖:則,,,設(shè)直線與平面所成角為,又由題可知為平面的一個法向量,則故選:B10、C【解析】由題意,設(shè),直線方程為,則由點到直線的距離公式求出點到直線的距離,再聯(lián)立直線與拋物線方程,由韋達定理及弦長公式求出,進而可得,結(jié)合即可得答案.【詳解】解:因為拋物線的性質(zhì):在拋物線上任意一點處的切線方程為,設(shè),所以在點處的切線方程為,在點B處的切線方程為,因為兩條切線都經(jīng)過點,所以,,所以直線的方程為,即,點到直線的距離為,聯(lián)立直線與拋物線方程有,消去得,由得,,由韋達定理得,所以弦長,所以,整理得,即,解得,又所以.故選:C.11、A【解析】動點在曲線,則找出曲線上某點的斜率與直線的斜率相等的點為距離最小的點,利用導數(shù)的幾何意義即可【詳解】不妨設(shè),定義域為:對求導可得:令解得:(其中舍去)當時,,則此時該點到直線的距離為最小根據(jù)點到直線的距離公式可得:解得:故選:A12、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”原則進行判斷即可.【詳解】因為方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】利用“1”代換,結(jié)合基本不等式求解.【詳解】因為,,所以,當且僅當,即時等號成立,所以當時,取得最小值8.故答案為:8.14、4【解析】由已知二項式可得展開式通項為,根據(jù)已知條件有,即可求出值.詳解】由題設(shè),,∴,則且為正整數(shù),解得.故答案為:4.15、25【解析】根據(jù)表格數(shù)據(jù)求出,代入,即可求出.【詳解】解:由題意知:,,將代入線性回歸方程,即,解得:.故答案為:5.25.16、【解析】設(shè),由,可得,求解即可【詳解】設(shè),由故解得:則點P的坐標為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)利用導數(shù)判斷原函數(shù)單調(diào)性,從而可求最值.(2)求導后發(fā)現(xiàn)導數(shù)中無參數(shù),故單調(diào)性與(1)中所求一致,然后利用零點存在定理結(jié)合的范圍,以及函數(shù)單調(diào)性證明在定義域內(nèi)有且只有一個零點.【小問1詳解】若,則,其定義域為,∴,由,得,∴當時,;當時,,∴在上單調(diào)遞增,在上單調(diào)遞減,∴【小問2詳解】證明:,由(Ⅰ)知在上單調(diào)遞增,在上單調(diào)遞誠,∵,∴當時,,故在上無零點;當時,,∵且,∴在上有且只有一個零點.綜上,有且只有一個零點.18、(1)證明見解析(2)【解析】(1)先利用正方形和梯形的性質(zhì)證明線面平行,然后再根據(jù)線面平行證明面面平行即可(2)根據(jù)題意建立空間直角坐標系,寫出相關(guān)點的坐標和相關(guān)的向量,然后分別求出平面與平面的一個法向量,最后求出平面與平面夾角的余弦值【小問1詳解】四邊形是正方形,可得:又平面,平面則有:平面四邊形是梯形,可得:又平面,平面則有:平面又故平面平面【小問2詳解】依題意知兩兩垂直,故以為原點,所在的直線分別為軸、軸、軸,建立如圖所示的空間直角坐標系.則有:,,,可得:,,設(shè)平面的一個法向量,則有:取,可得:設(shè)平面的一個法向量,則有:取,可得:設(shè)平面與平面的夾角為,則故平面與平面夾角的余弦值為19、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧長公式求出弧的長度,則可得函數(shù);(2)利用導數(shù)可求得結(jié)果.【詳解】(1)如圖,連接在直角三角形中,所以由于則弧的長為(2)由(1)可知,令得,因為所以,當單調(diào)遞增,當單調(diào)遞減,所以當時,使得綠化帶總長度最大.【點睛】關(guān)鍵點點睛:仔細審題,注意題目中的關(guān)鍵詞“兩側(cè)”和“一側(cè)”是解題關(guān)鍵.20、(1)(2)【解析】(1)令,則,根據(jù)二次函數(shù)的性質(zhì)即可求出;(2)令,方程化為,求出的變化情況即可求出.【小問1詳解】令,則,則題目等價于在的最大值為9,最小值為1,對稱軸,開口向上,則,解得;【小問2詳解】令,則,于是方程可變?yōu)椋?,因為函?shù)在單調(diào)遞減,在單調(diào)遞增,且,要使方程有兩個不同的解,則與有兩個不同的交點,所以.21、(1)(2)【解析】(1)設(shè)點,根據(jù)題意,得到,根據(jù)向量數(shù)量積的坐標表示,得到,根據(jù)其最小值,求出,即可得出橢圓方程;(2)設(shè),,,聯(lián)立直線與橢圓方程,根據(jù)韋達定理,由弦長公式,以及點到直線距離公式,求出的面積的最值,得到;得出點的軌跡為橢圓,且點為橢圓的左、右焦點,記,則,得到,根據(jù)對勾函數(shù)求出最值.【小問1詳解】設(shè)點,由題意知,所以:,則,當時,取得最大值,即,故橢圓C的標準方程是【小問2詳解】設(shè),,,則由得,,點O到直線l的距離,對用均值不等式,則:當且僅當即,①,S取得最大值.此時,,,即,代入①式整理得,即點M的軌跡為橢圓且點,為橢圓的左、右焦點,即記,則于是:,由對勾函數(shù)的性質(zhì):當時,,且,故的取值范圍為22、(1)證明見解析(2)(3)【解析】(1)連接,交于O,連接OD,根據(jù)中位線的性質(zhì),可證,根據(jù)線面平行的判定定理,即可得證;(2)如圖建系,求得各點坐標,進而可求得平面與平面法向量,根據(jù)二面角的向量求法,即可得答案;(3)求得坐標,根據(jù)線線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論