2026屆江蘇省陸慕高級中學(xué)高二上數(shù)學(xué)期末監(jiān)測試題含解析_第1頁
2026屆江蘇省陸慕高級中學(xué)高二上數(shù)學(xué)期末監(jiān)測試題含解析_第2頁
2026屆江蘇省陸慕高級中學(xué)高二上數(shù)學(xué)期末監(jiān)測試題含解析_第3頁
2026屆江蘇省陸慕高級中學(xué)高二上數(shù)學(xué)期末監(jiān)測試題含解析_第4頁
2026屆江蘇省陸慕高級中學(xué)高二上數(shù)學(xué)期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆江蘇省陸慕高級中學(xué)高二上數(shù)學(xué)期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.德國數(shù)學(xué)家高斯是近代數(shù)學(xué)奠基者之一,有“數(shù)學(xué)王子”之稱,在歷史上有很大的影響.他幼年時就表現(xiàn)出超人的數(shù)學(xué)天才,10歲時,他在進行的求和運算時,就提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對應(yīng)項的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也稱之為高斯算法.已知數(shù)列,則()A.96 B.97C.98 D.992.已知空間三點,,在一條直線上,則實數(shù)的值是()A.2 B.4C.-4 D.-23.若傾斜角為的直線過兩點,則實數(shù)()A. B.C. D.4.已知是公差為3的等差數(shù)列.若,,成等比數(shù)列,則的前10項和()A.165 B.138C.60 D.305.在等差數(shù)列中,,,則的值是()A.130 B.260C.156 D.1686.在各項都為正數(shù)的等比數(shù)列中,首項,前3項和為21,則()A.84 B.72C.33 D.1897.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)到與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列、這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23則該數(shù)列的第100項為()A.4862 B.4962C.4852 D.49528.已知直線與拋物線C:相交于A,B兩點,O為坐標(biāo)原點,,的斜率分別為,,則()A. B.C. D.9.將函數(shù)的圖象向左平移個單位長度后,得到函數(shù)的圖象,則()A. B.C. D.10.拋物線上有兩個點,焦點,已知,則線段的中點到軸的距離是()A.1 B.C.2 D.11.焦點坐標(biāo)為的拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.12.“若”為真命題,那么p是(

)A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓心在x軸上且過點的一個圓的標(biāo)準(zhǔn)方程可以是______14.不等式的解集是___________.15.已知直線l1:(1)x+y﹣2=0與l2:(1)x+ay﹣4=0平行,則a=_____.16.設(shè)橢圓,點在橢圓上,求該橢圓在P處的切線方程______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的圓心在直線上,且經(jīng)過點和.(1)求圓的標(biāo)準(zhǔn)方程;(2)若過點且斜率存在的直線與圓交于,兩點,且,求直線的方程.18.(12分)已知等差數(shù)列滿足:,(1)求數(shù)列的通項公式,以及前n項和公式;(2)若,求數(shù)列的前n項和19.(12分)已知為各項均為正數(shù)的等比數(shù)列,且,(1)求數(shù)列的通項公式;(2)令,求數(shù)列前n項和20.(12分)已知為數(shù)列的前項和,且.(1)求的通項公式;(2)若,求的前項和.21.(12分)在等差數(shù)列中,設(shè)前項和為,已知,.(1)求的通項公式;(2)令,求數(shù)列的前項和.22.(10分)已知雙曲線()的一個焦點是,離心率.(1)求雙曲線的方程;(2)若斜率為的直線與雙曲線交于兩個不同的點,線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】令,利用倒序相加原理計算即可得出結(jié)果.【詳解】令,,兩式相加得:,∴,故選:C2、C【解析】根據(jù)三點在一條直線上,利用向量共線原理,解出實數(shù)的值.【詳解】解:因為空間三點,,在一條直線上,所以,故.所以.故選:C.【點睛】本題主要考查向量共線原理,屬于基礎(chǔ)題.3、A【解析】解方程即得解.【詳解】解:由題得.故選:A4、A【解析】由等差數(shù)列的定義與等比數(shù)列的性質(zhì)求得首項,然后由等差數(shù)列的前項和公式計算【詳解】因為,,成等比數(shù)列,所以,所以,解得,所以故選:A5、A【解析】由等差數(shù)列的性質(zhì)計算得到,進而利用求和公式,變形求出答案.【詳解】由題意得:,故故選:A6、A【解析】分析:設(shè)等比數(shù)列的公比為,根據(jù)前三項的和為列方程,結(jié)合等比數(shù)列中,各項都為正數(shù),解得,從而可以求出的值.詳解:設(shè)等比數(shù)列的公比為,首項為3,前三項的和為,,解之得或,在等比數(shù)列中,各項都為正數(shù),公比為正數(shù),舍去),,故選A.點睛:本題考查以一個特殊的等比數(shù)列為載體,通過求連續(xù)三項和的問題,著重考查了等比數(shù)列的通項,等比數(shù)列的性質(zhì)和前項和等知識點,屬于簡單題.7、D【解析】根據(jù)題意可得數(shù)列2,3,5,8,12,17,23,,滿足:,,從而利用累加法即可求出,進一步即可得到的值【詳解】2,3,5,8,12,17,23,后項減前項可得1,2,3,4,5,6,所以,所以.所以.故選:D8、C【解析】設(shè),,由消得:,又,由韋達定理代入計算即可得答案.【詳解】設(shè),,由消得:,所以,故.故選:C【點睛】本題主要考查了直線與拋物線的位置關(guān)系,直線的斜率公式,考查了轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運算求解能力.9、A【解析】先化簡函數(shù)表達式,然后再平移即可.【詳解】函數(shù)的圖象向左平移個單位長度后,得到的圖象.故選:A10、B【解析】利用拋物線的定義,將拋物線上的點到焦點的距離轉(zhuǎn)化為點到準(zhǔn)線的距離,即可求出線段中點的橫坐標(biāo),即得到答案.【詳解】由已知可得拋物線的準(zhǔn)線方程為,設(shè)點的坐標(biāo)分別為和,由拋物線的定義得,即,線段中點的橫坐標(biāo)為,故線段的中點到軸的距離是.故選:.11、D【解析】依次確定選項中各個拋物線的焦點坐標(biāo)即可.【詳解】對于A,的焦點坐標(biāo)為,A錯誤;對于B,的焦點坐標(biāo)為,B錯誤;對于C,焦點坐標(biāo)為,C錯誤;對于D,的焦點坐標(biāo)為,D正確.故選:D.12、A【解析】求不等式的解集,根據(jù)解集判斷p.【詳解】由解得-2<x<4,所以p是.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】確定x軸上一個點做圓心,求出半徑,再寫出圓的標(biāo)準(zhǔn)方程即可.【詳解】以x軸上的點為圓心,則半徑,所以圓的標(biāo)準(zhǔn)方程為:.故答案為:14、##【解析】將分式不等式等價轉(zhuǎn)化為不等式組,求解即得.【詳解】原不等式等價于,解得,故答案為:.15、2【解析】根據(jù)兩直線平行的充要條件求解【詳解】因為已知兩直線平行,所以,解得故答案為:【點睛】本題考查兩直線平行的充要條件,兩直線平行的充要條件是,或,在均不為0時,用表示容易理解與記憶16、【解析】由題意可知切線的斜率存在,所以設(shè)切線方程為,代入橢圓方程中整理化簡,令判別式等于零,可求出的值,從而可求得切線方程【詳解】由題意可知切線的斜率存在,所以設(shè)切線方程為,將代入中得,,化簡整理得,令,化簡整理得,即,解得,所以切線方程為,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè)圓心,由題意得,,結(jié)合兩點間的距離公式求解的值,則圓心與半徑可求,圓的方程可求;(2)若直線的斜率不存在,設(shè)直線的方程為,符合題意,若直線的斜率存在,設(shè)直線方程為,即,由圓心到直線的距離與半徑關(guān)系求得,則直線方程可求【小問1詳解】解:(1)設(shè)圓心,由題意得,,,解得.圓心坐標(biāo)為,半徑.則圓的方程為;【小問2詳解】解:(2)直線的斜率存在時,設(shè)直線的方程為,即,,圓心到直線的距離,即,解得,得直線的方程為.18、(1),(2)【解析】(1)由,,列出方程組,求得,即可求得數(shù)列的通項公式,利用公式可得.(2)由(1)求得,結(jié)合“裂項法”求和,即可求解.【詳解】(1)設(shè)等差數(shù)列的公差為,因為,,可得,解得,所以數(shù)列的通項公式.(2)由(1)知,可得,所以數(shù)列的前項和:.【點睛】關(guān)鍵點睛:本題主要考查了等差數(shù)列的通項公式的求解,以及“裂項法”求和的應(yīng)用,解答本題的關(guān)鍵是將的通項裂成兩項的差,利用裂項相消求和,屬于中檔題.19、(1)(2)【解析】(1)利用基本量法,求出首項和公比,即可求解.(2)利用錯位相減法,即可求解.【小問1詳解】設(shè)等比數(shù)列公比為【小問2詳解】20、(1)(2)【解析】(1)由與的關(guān)系結(jié)合等比數(shù)列的定義得出的通項公式;(2)由(1)得出,再由錯位相減法得出的前項和.【小問1詳解】因為,所以當(dāng)時,,所以.當(dāng)時,,兩式相減,得,所以,所以,所以是以1為首項,2為公比的等比數(shù)列,所以.【小問2詳解】由(1)得,所以,兩邊同乘以,得,兩式相減,得,所以.21、(1)(2)【解析】(1)根據(jù)等差數(shù)列的前項和公式,即可求解公差,再計算通項公式;(2)根據(jù)(1)的結(jié)果,利用裂項相消法求和.【小問1詳解】設(shè)的公差為,由已知得,解得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論