版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2026屆貴州省銅仁市德江一中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知一個(gè)圓錐的體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.2.已知一個(gè)乒乓球從米高的高度自由落下,每次落下后反彈的高度是原來高度的倍,則當(dāng)它第8次著地時(shí),經(jīng)過的總路程是()A. B.C. D.3.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對(duì)其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測(cè),若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個(gè)成員檢測(cè)呈陽性的概率均為p(0<p<1)且相互獨(dú)立,該家庭至少檢測(cè)了5個(gè)人才能確定為“感染高危戶”的概率為f(p),當(dāng)p=p0時(shí),f(p)最大,則p0=()A. B.C. D.4.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直5.已知為虛數(shù)單位,復(fù)數(shù)滿足為純虛數(shù),則的虛部為()A. B.C. D.6.在中,,,,若該三角形有兩個(gè)解,則范圍是()A. B.C. D.7.?dāng)?shù)列2,0,2,0,…的通項(xiàng)公式可以為()A. B.C. D.8.若直線的斜率,則直線的傾斜角的取值范圍是()A. B.C. D.9.已知直線和直線互相垂直,則等于()A.2 B.C.0 D.10.過點(diǎn)且斜率為的直線方程為()A. B.C D.11.2021年4月29日,中國空間站天和核心艙發(fā)射升空,這標(biāo)志著中國空間站在軌組裝建造全面展開,我國載人航天工程“三步走”戰(zhàn)略成功邁出第三步.到今天,天和核心艙在軌已經(jīng)九個(gè)多月.在這段時(shí)間里,空間站關(guān)鍵技術(shù)驗(yàn)證階段完成了5次發(fā)射、4次航天員太空出艙、1次載人返回、1次太空授課等任務(wù).一般來說,航天器繞地球運(yùn)行的軌道近似看作為橢圓,其中地球的球心是這個(gè)橢圓的一個(gè)焦點(diǎn),我們把橢圓軌道上距地心最近(遠(yuǎn))的一點(diǎn)稱作近(遠(yuǎn))地點(diǎn),近(遠(yuǎn))地點(diǎn)與地球表面的距離稱為近(遠(yuǎn))地點(diǎn)高度.已知天和核心艙在一個(gè)橢圓軌道上飛行,它的近地點(diǎn)高度大約351km,遠(yuǎn)地點(diǎn)高度大約385km,地球半徑約6400km,則該軌道的離心率為()A. B.C. D.12.已知等差數(shù)列,且,則()A.3 B.5C.7 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓與雙曲線具有相同的焦點(diǎn),,且在第一象限交于點(diǎn),設(shè)橢圓和雙曲線的離心率分別為,,若,則的最小值為_______.14.若動(dòng)直線分別與函數(shù)和的圖像交于A,B兩點(diǎn),則的最小值為______15.已知圓柱軸截面是邊長為4的正方形,則圓柱的側(cè)面積為______________
.16.一個(gè)質(zhì)地均勻的正四面體,其四個(gè)面涂有不同的顏色,拋擲這個(gè)正四面體一次,觀察它與地面接觸的顏色得到樣本空間{紅,黃,藍(lán),綠},設(shè)事件{紅,黃},事件{紅,藍(lán)},事件{黃,綠},則下列判斷:①E與F是互斥事件;②E與F是獨(dú)立事件;③F與G是對(duì)立事件;④F與G是獨(dú)立事件.其中正確判斷的序號(hào)是______(請(qǐng)寫出所有正確判斷的序號(hào))三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,是圓上一點(diǎn),過A作直線l交圓C于另一點(diǎn)B,交x軸正半軸于點(diǎn)D,且A為的中點(diǎn).(1)求圓C在點(diǎn)A處的切線方程;(2)求直線l的方程.18.(12分)年月日,中國向世界莊嚴(yán)宣告,中國脫貧攻堅(jiān)戰(zhàn)取得了全面勝利,現(xiàn)行標(biāo)準(zhǔn)下萬農(nóng)村貧困人口全部脫貧,個(gè)貧困縣全部摘帽,萬個(gè)貧困村全部出列,區(qū)域性整體貧困得到解決,完成了消除絕對(duì)貧困的艱巨任務(wù),困擾中華民族幾千年的絕對(duì)貧困問題得到了歷史性的解決!為了鞏固脫貧成果,某農(nóng)科所實(shí)地考察,研究發(fā)現(xiàn)某脫貧村適合種植、兩種經(jīng)濟(jì)作物,可以通過種植這兩種經(jīng)濟(jì)作物鞏固脫貧成果,通過大量考察研究得到如下統(tǒng)計(jì)數(shù)據(jù):經(jīng)濟(jì)作物的畝產(chǎn)量約為公斤,其收購價(jià)格處于上漲趨勢(shì),最近五年的價(jià)格如下表:年份編號(hào)年份單價(jià)(元/公斤)經(jīng)濟(jì)作物的收購價(jià)格始終為元/公斤,其畝產(chǎn)量的頻率分布直方圖如下:(1)若經(jīng)濟(jì)作物的單價(jià)(單位:元/公斤)與年份編號(hào)具有線性相關(guān)關(guān)系,請(qǐng)求出關(guān)于的回歸直線方程,并估計(jì)年經(jīng)濟(jì)作物的單價(jià);(2)用上述頻率分布直方圖估計(jì)經(jīng)濟(jì)作物的平均畝產(chǎn)量(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表),若不考慮其他因素,試判斷年該村應(yīng)種植經(jīng)濟(jì)作物還是經(jīng)濟(jì)作物?并說明理由附:,19.(12分)已知等差數(shù)列的前三項(xiàng)依次為,4,,前項(xiàng)和為,且.(1)求的通項(xiàng)公式及的值;(2)設(shè)數(shù)列的通項(xiàng),求證是等比數(shù)列,并求的前項(xiàng)和.20.(12分)如圖,在四棱柱中,底面,,,且,(1)求證:平面平面;(2)求二面角所成角的余弦值21.(12分)已知橢圓的離心率,左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,過的直線交橢圓于、兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求的面積的最大值.22.(10分)已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓C上,且滿足(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓C交于不同的兩點(diǎn)M,N,且(O為坐標(biāo)原點(diǎn)).證明:總存在一個(gè)確定的圓與直線l相切,并求該圓的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計(jì)算可得,利用扇形的面積公式計(jì)算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B2、C【解析】根據(jù)等比數(shù)列的求和公式求解即可.【詳解】從第1次著地到第2次著地經(jīng)過的路程為,第2次著地到第3次著地經(jīng)過的路程為,組成以為首項(xiàng),公比為的等比數(shù)列,所以第1次著地到第8次著地經(jīng)過的路程為,所以經(jīng)過的總路程是.故答案為:C.3、A【解析】解設(shè)事件A為:檢測(cè)了5人確定為“感染高危戶”,設(shè)事件B為:檢測(cè)了6人確定為“感染高危戶”,則,再利用基本不等式法求解.【詳解】解:設(shè)事件A為:檢測(cè)了5人確定為“感染高危戶”,設(shè)事件B為:檢測(cè)了6人確定為“感染高危戶”,則,,所以,令,則,,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,即,故選:A4、B【解析】根據(jù)可判斷兩平面垂直.【詳解】因?yàn)椋?,所以,垂?故選:B.5、D【解析】先設(shè),代入化簡,由純虛數(shù)定義求出,即可求解.【詳解】設(shè),所以,因?yàn)闉榧兲摂?shù),所以,解得,所以的虛部為:.故選:D.6、D【解析】根據(jù)三角形解得個(gè)數(shù)可直接構(gòu)造不等式求得結(jié)果.【詳解】三角形有兩個(gè)解,,即.故選:D.7、D【解析】舉特例排除ABC,分和討論確定D.【詳解】A.當(dāng)時(shí),,不符;B.當(dāng)時(shí),,不符;C.當(dāng)時(shí),,不符;D.當(dāng)時(shí),,當(dāng)時(shí),,符合.故選:D.8、B【解析】根據(jù)斜率的取值范圍,結(jié)合來求得傾斜角的取值范圍.【詳解】設(shè)傾斜角為,因?yàn)?,且,所?故選:B9、D【解析】利用直線垂直系數(shù)之間的關(guān)系即可得出.【詳解】解:直線和直線互相垂直,則,解得:.故選:D.10、B【解析】利用點(diǎn)斜式可得出所求直線的方程.【詳解】由題意可知所求直線的方程為,即.故選:B.11、A【解析】根據(jù)遠(yuǎn)地點(diǎn)和近地點(diǎn),求出軌道即橢圓的半長軸和半焦距,即可求得答案.【詳解】設(shè)橢圓的半長軸為a,半焦距為c.則根據(jù)題意得;解得,故該軌道即橢圓的離心率為,故選:A12、B【解析】根據(jù)等差數(shù)列的性質(zhì)求得正確答案.【詳解】由于數(shù)列是等差數(shù)列,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意設(shè)焦距為,橢圓長軸長為,雙曲線實(shí)軸為,令在雙曲線的右支上,由已知條件結(jié)合雙曲線和橢圓的定義推出,由此能求出的最小值【詳解】由題意設(shè)焦距為,橢圓長軸長為,雙曲線實(shí)軸為,令在雙曲線的右支上,由雙曲線的定義,由橢圓定義,可得,,又,,可得,得,即,可得,則,當(dāng)且僅當(dāng),上式取得等號(hào),可得的最小值為故答案為:【點(diǎn)睛】本題考查橢圓和雙曲線的性質(zhì),主要是離心率,解題時(shí)要熟練掌握雙曲線、橢圓的定義,注意均值定理的合理運(yùn)用14、【解析】利用導(dǎo)數(shù)求出與平行的曲線的切線,再利用兩點(diǎn)間距離公式進(jìn)行求解即可.【詳解】設(shè)曲線的切點(diǎn)為,由,所以曲線的切線的斜率為,直線的斜率為,當(dāng)切線與平行時(shí),即,即切點(diǎn)為,當(dāng)直線過切點(diǎn)時(shí),有最小值,即,此時(shí),解方程組:,,故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用曲線的切線性質(zhì)進(jìn)行求解是解題的關(guān)鍵.15、【解析】由圓柱軸截面的性質(zhì)知:圓柱體的高為,底面半徑為,根據(jù)圓柱體的側(cè)面積公式,即可求其側(cè)面積.【詳解】由圓柱的軸截面是邊長為4的正方形,∴圓柱體的高為,底面半徑為,∴圓柱的側(cè)面積為.故答案為:.16、②③【解析】由對(duì)立和互斥事件的定義判斷①③;由獨(dú)立事件的性質(zhì)判斷②④.【詳解】{紅},則E與F不是互斥事件;且,則F與G是對(duì)立事件;,則E與F是獨(dú)立事件;,,則F與G不是獨(dú)立事件故答案為:②③三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)以直線方程的點(diǎn)斜式去求圓C在點(diǎn)A處的切線方程;(2)以A為的中點(diǎn)為突破口,設(shè)點(diǎn)法去求直線l的方程簡單快捷.【小問1詳解】圓可化為,圓心因?yàn)橹本€的斜率為,所以圓C在A點(diǎn)處切線斜率為2,所以切線方程為即.【小問2詳解】由題意設(shè)因?yàn)槭侵悬c(diǎn),所以將B代入圓C方程得解得或當(dāng)時(shí),,此時(shí)l方程為當(dāng)時(shí),,此時(shí)l方程為所以l方程為或18、(1),元/公斤;(2)應(yīng)該種植經(jīng)濟(jì)作物;理由見解析【解析】(1)利用表格數(shù)據(jù)求出中心點(diǎn)值,再利用最小二乘法求出回歸直線方程,進(jìn)而利用所求方程進(jìn)行預(yù)測(cè);(2)先利用頻率分布直方圖的每個(gè)小矩形面積之和為1求得值,再利用平均值公式求其平均值,再比較兩種作物的畝產(chǎn)量進(jìn)行求解.【詳解】(1),,則關(guān)于回歸直線方程為當(dāng)時(shí),,即估計(jì)年經(jīng)濟(jì)作物的單價(jià)為元/公斤(2)利用頻率和為得:,所以經(jīng)濟(jì)作物的畝產(chǎn)量的平均值為:,故經(jīng)濟(jì)作物畝產(chǎn)值為元,經(jīng)濟(jì)作物畝產(chǎn)值為元,應(yīng)該種植經(jīng)濟(jì)作物19、(1),(2)證明見解析,【解析】(1)直接利用等差中項(xiàng)的應(yīng)用求出的值,進(jìn)一步求出數(shù)列的通項(xiàng)公式和的值;(2)利用等比數(shù)列的定義即可證明數(shù)列為等比數(shù)列,進(jìn)一步求出數(shù)列的和.【小問1詳解】等差數(shù)列的前三項(xiàng)依次為,4,,∴,解得;故首項(xiàng)為2,公差為2,故,前項(xiàng)和為,且,整理得,解得或-11(負(fù)值舍去).∴,k=10.【小問2詳解】由(1)得:,故(常數(shù)),故數(shù)列是等比數(shù)列;∴.20、(1)證明見解析;(2).【解析】(1)證出,,由線面垂直的判定定理可得平面,再根據(jù)面面垂直的判定定理即可證明.(2)分別以,,為,,軸,建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量以及平面的一個(gè)法向量,由即可求解.【詳解】(1)證明:因?yàn)?,,所以,,因?yàn)?,所以,所以,即因?yàn)榈酌?,所以底面,所以因?yàn)?,所以平面,又平面,所以平面平面?)解:如圖,分別以,,為,,軸,建立空間直角坐標(biāo)系,則,,,,所以,,,設(shè)平面的法向量為,則令,得設(shè)平面的法向量為,則令,得,所以,由圖知二面角為銳角,所以二面角所成角的余弦值為【點(diǎn)睛】思路點(diǎn)睛:解決二面角相關(guān)問題通常用向量法,具體步驟為:(1)建坐標(biāo)系,建立坐標(biāo)系的原則是盡可能的使得已知點(diǎn)在坐標(biāo)軸上或在坐標(biāo)平面內(nèi);(2)根據(jù)題意寫出點(diǎn)的坐標(biāo)以及向量的坐標(biāo),注意坐標(biāo)不能出錯(cuò).(3)利用數(shù)量積驗(yàn)證垂直或求平面的法向量.(4)利用法向量求距離、線面角或二面角.21、(1)(2)【解析】(1)利用橢圓的離心率、點(diǎn)在橢圓上以及得到的方程組,進(jìn)而得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)出直線方程,聯(lián)立直線和橢圓方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系和三角形的面積公式得到三角形的面積,再利用基本不等式求其最值.【小問1詳解】解:由題可得,且,將點(diǎn)代入橢圓方程,得,解得,,即橢圓方程為;【小問2詳解】解:由(1)可得,,設(shè):,聯(lián)立,消去,得,設(shè),,則,則所以,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故的面積的最大值為.22、(1);(2)理由見解析,圓的方程為.【解析】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 選礦集控工崗前認(rèn)證考核試卷含答案
- 老年皮膚疾病患者的氣候防護(hù)方案
- 汽車服務(wù)話術(shù)指南
- 戶外蛇咬傷與蟲蜇傷的急救指南
- 寵物護(hù)理經(jīng)驗(yàn)交流
- 《2026年》護(hù)理教師崗位高頻面試題包含詳細(xì)解答
- 2026年及未來5年市場(chǎng)數(shù)據(jù)中國地方投融資平臺(tái)行業(yè)市場(chǎng)深度研究及投資戰(zhàn)略規(guī)劃報(bào)告
- 交通設(shè)施維護(hù)保養(yǎng)規(guī)范制度
- 2026年及未來5年市場(chǎng)數(shù)據(jù)中國批發(fā)行業(yè)市場(chǎng)全景分析及投資規(guī)劃建議報(bào)告
- 2026年及未來5年市場(chǎng)數(shù)據(jù)中國信息化監(jiān)理行業(yè)發(fā)展運(yùn)行現(xiàn)狀及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 泌尿系統(tǒng)疾病診治
- 2025-2026學(xué)年大象版四年級(jí)上冊(cè)科學(xué)全冊(cè)重點(diǎn)知識(shí)點(diǎn)
- 治療失眠癥的認(rèn)知行為療法訓(xùn)練
- 太原師范學(xué)院簡介
- 2026年湘西民族職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫新版
- 生產(chǎn)安全事故調(diào)查分析規(guī)則
- 2021??低旸S-AT1000S超容量系列網(wǎng)絡(luò)存儲(chǔ)設(shè)備用戶手冊(cè)
- 水利水電工程單元工程施工質(zhì)量驗(yàn)收標(biāo)準(zhǔn)第8部分:安全監(jiān)測(cè)工程
- 鋼材銷售年終工作總結(jié)
- 【政治】2025年高考真題政治-海南卷(解析版-1)
- DB50∕T 1571-2024 智能網(wǎng)聯(lián)汽車自動(dòng)駕駛功能測(cè)試規(guī)范
評(píng)論
0/150
提交評(píng)論